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First examine seasonal forecasts on the physical system
and SSTs in particular
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Multi-Model Forecasts

Many studies have found that forecasts from multiple models are
better than those from any single model

Here we examine the skill of SST hindcasts from the North
American Multi-Model Ensemble (NMME), phase 1

— Kirtman et al. 2014, BAMS
Monthly Hindcasts during 1982-2002 from 14 models

— All output ona 1° lat x 1° lon grid
Skill estimated by:

— First average ensembles from individual models
— Average models to create a multi-model mean hindcast
— Bias correct hindcasts by removing drift (initialization month, lead)

— Skill of SST hindcasts evaluated relative to 74° Reynolds OI SST data set



Large Marine Ecosystems (LMEs)
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LMEs 1: East Bering Sea (EBS), 2: Gulf of Alaska (GoA), 3: California
Current (CC), 5: Gulf of Mexico (GoM), 6: Southeast U.S. Continental
Shelf (SEUS), 7: Northeast U.S. Continental Shelf (NEUS), 8: Scotian Shelf
(SS), 9: Newfoundland-Labrador Shelf (NL), 10: Insular Pacific Hawaiian

(IPH), 65: Aleutian Islands




NMME Ensemble SST Forecast Skill
Gulf of Alaska and the California Current LMEs
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SST Forecast Skill for the Gulf of Alaska
and the California Current LMEs

Anomaly Correlation Coefficient
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Hindcast skill (ACC)
for 3-sub regions
in the California

Current LME
from CanCM4
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Processes that influence predictability
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Correlation of Pacific basin wide SST with CCS regionally
averaged SST 0, 3, 6, and 9 months prior in CanCM4 model



Forecast Skill in the CC
LME for:

a) initialization,

b) lead time

c) forecast month

Persistence + Nino3.4
forecast from a simple
multiple linear
regression model
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Persistence + Nino3.4
CanCM4
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Ecosystem Prediction

Statistical Ecosystem

prediction
Global Physical Physical Regional
System Boundary Ocean High Resolution
| Seasonal * | Model Physical/BGC
prediction Conditions | (e.g. ROMS) prediction
\ Assimilate
BGC data v
Global Earth System Higher trophic
Models with Ocean BGC level diagnosed or
High resolution (GFDL CM2.6) or Predicted
variable resolution (e.g. MPAS) Models > (wide array of
models)




Application of SST forecasts to Pacific Sardines

Sardine population simulated using an age-structured model
— Recruitment dependent on (parents) biomass and SST

Current harvest guideline (HG) dependent on previous year’s
SST and biomass in southern CC LME (HG2)

Use late winter/early spring SST forecast from an NMME model

— Use in HG (controls fishing rate) to get predicted biomass
(HG3)

Use the predicted biomass to inform the following years
biomass (HG4)

Tomassi et al. submitted to Ecological Applications



To test forecast utility, compared effectiveness
of four different sardine HGs

HG1 — constant fishing rate of 0.18

SST averaging
| | | window
\ \ \ for fishing rate

Biomass

t-3 -2 t-1 t t+1 142

Tommasi et al. submitted to Ecological Applications



Application of SST forecasts to Pacific Sardines
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1. Identifying priorities in ecological

indicators to forecast

* As a first step, predict key physical variables:
— e.g. SST, bottom temperature, depth of the 1026 kg m3 isopycnal
— surface winds/timing and intensity of upwelling.
— Some ecological forecasts can be based on these indicators.
— Improved downscaling of surface atmospheric fields from large-scale
climate models to regional ocean models?
* Biogeochemistry:
— phytoplankton
— oxygen, aragonite saturation (pH)
— Initialization of BGC now often based on relations with with
temperature and salinity. Can this be improved on?
* Tailored forecasts for key higher trophic level (salmon)

— Wide range of complexity for now

— Move towards full ecosystem models?



2. Data Streams

* Climate model output exists NMME forecasts (although may
require access to archive for some surface variables and fields
as a function of depth for surface and side boundary
conditions for regional models)

* Phytoplankton estimate from space exists — algorithms
enhanced?

 Other BGC fields?
— Enough observations to test forecasts

— More observations to initialize models



3. Providing uncertainty estimates on the
forecasts

Can draw on expertise from the weather forecast
community on skill estimates for probability
forecasts. Many methods to estimate probability skill

Using large ensembles from multiple models

Some data assimilation systems (e.g. ensemble
Kalman filters)

Some statistical prediction methods, e.g. Linear
Inverse models (LIMs), provide error estimates and
state based estimates of skill.



Probability forecast assessment

Briar score how well do models forecast the probablity of an
SST anomaly being in the cold (lower), neutral or warm tercile
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Model Spread vs skill
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4. Developing communication strategies to
stakeholders and the general public.

* Partnering with existing NOAA entities/programs:
— Fishery councils
— Integrated Ecosystem Assessment (IEA)
— Regional Integrated Sciences and Assessments (RISAs)?

* Appropriate NGOs (some have working relations with
fishery community)

 Work closely with fishery community and other stake

holders in devleloping products (succesful examples
from Australia)

 Web based distribution with
— videos explaining the results
— emphasis on probability forecasts



Summary Alexander

As a first step explored seasonal SST forecast skill from
climate models

GCMs have skill in predicting SSTs but varies widely by region,
— Gulf of Alaska & California Current reasonably good

Skill in LME CC sub-regions
— Decreases from north to south in the 3 California Current subregions

— CC Skill mainly from persistence and ENSO

Multi-model mean generally the best forecast though not
necessarily for all regions at all time

— Increase in skill of ensemble large for probability forecasts

Steps that are needed to go from large-scale physical model
forecasts to fine-scale ecosystem forecasts are discussed



Persistence

CanCM4 model skill N
(ACC) relative to the
influence to

persistence and
ENSO on SSTAs in Cancma
the CCS. e

) S
Anomaly Correlation Coefficient

12 .__-_N!!.g.a .‘,4

10

(=] n i o2} o

JFMAMJJASOND JFMAMJJASOND

CanCM4 - Persistence NINO3.4 - Persistence

%

| j - =8 ) oi
JFMAMJ JASOND JFMAMJJASOND
Initialization Month

Forecast Lead (months)




Overall Skill Estimates of SST hindcasts
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Application of SST forecasts to
Pacific Sardines

* Robust recruitment — spring SST relationship
* Climate variability drives fluctuations in abundance

* Current harvest guideline (HG) dependent on previous
year’s SST in southern California Current LME

549
45¢

36¢
27

140°W120°W

Tommasi et al. submitted to Ecological Applications



