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The residual overturning circulation (ROC) according to ECCO4

Atlantic ROC
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STILL NOT GREAT AGREEMENT AMONG ESTIMATES...



A horizontal look at the upper branch of the ROC

Mass (Euler+bolus) budget above 09 =37: smoothed diapycnal velocity (colors) for ECCO4
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|Isopycnal depth difference explained in the context of simple models (Jones & Cessi, 2016)
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 Deep water formation occurs in North Atlantic, but not North Pacific

How is water entering the Indo-Pacific returning to the Atlantic (warm versus cold route)?
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Interbasin exchanges in the Southern Ocean: upper branch of the ROC

Mass budget above 02 =37: smoothed diapycnal cell transport (colors)m4
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Particles circle tens of times before exiting into one sector

/«:
Schematic of a particle path with net eastward flow through warm route.

How does one focus on the net exchanged component of the transport?



Helmholtz decomposition on isopycnals: upper branch of the ROC

Divergent mass budget above 09 =37: smoothed diapycnal velocity (colors)

30°N

60°N

30°N

BDDS 4

o

S
180°W

120°W

|
60°W

Dﬂ

60°E

120°E

180°W

«10%
1

Surface freshwater fluxes in Sv ©
8 Area integrated diapycnal velocity at 72=37 in Sv ©

Section transport above 02=37 in Sv —
0.6

Perform a Helmholtz decomposition on
thickness integrated horizontal velocity'

0.2 h(p1)
2 /h (u,0)dz = &8 X Vi) + Vio .

" (p2) / /'

Recirculating component+Divergent component

-0.2 V-Vho = @
/ \

-0.4 minimizes energy norm diapycnal velocity

Cold-route is negative!

Tasman leakage is positive!

Is it meaningful? Need to compare with other
methods, e.qg. particle paths that carefully
conserve volume, with unbiased starting points

Young (JPO, 2012) shows how to do vector calculus in density coordinates: abandon orthogonality and use dual vectors.



Helmholtz decomposition on isopycnals: upper branch of the ROC

Streamfunction transport above 09 =37
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The recirculating component is a large gyre around the world

Inter-basin exchange: 0OSv through cold route
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Super gyre max transport: 72Sv

80 Is it meaningful? Need to compare with other

E”01 0°W 120°W 60°W 0° 60°E 120°E 1B“W methods, e.qg. particle paths that carefully
conserve volume, with unbiased starting points

Neither components of Helmholtz decomposition show Indo-Pacific intermediate+thermocline water going eastward through the cold route
At least -4.9-3.5=-8.4 Sv are going westward through warm route.



elmholtz decomposition versus particle tracking in a simple model (Cessig&Jones 2017, Jones&Cessi 2018)

Velocity potential of divergent velocity (colors) and transport Pseudo streamlines (contours) and salt (colors)
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Particle paths and pseudo-streamlines show ZERO transport through cold route and about -155v through warm route.

Velocity potential distributes the transport between routes to minimize u2+v2
It appears that streamfunction is more faithful to particle paths (for weak divergence)

All transports are calculated using sum of Eulerian+bolus velocity: very ditterent answer with Eulerian only! Indicates
importance of eddy transport.

Need to apply these diagnostics to complex/high resolution models and data sets to quantify exchanges.



Simple models need to lengthen S. Africa to 45°S for cold route (CessigJones 2017, Jones&Cessi 2018)

Long continent always ends at 525

Short continent ends at 45S Short continent ends at 21S
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Particle paths and pseudo-streamlines show ZERO transport through warm route if S. Africa Is at 4505 or 530S

Particle paths and pseudo-streamlines show ZERO transport through warm route if S. Africa is at 35°S or 2105



Latitude

/Zero Ekman pumping latitude 6, sets warm vs. cold route

Barotropic streamfunction from GCM
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 North of @, there are gyres

 South of 8, the flow is cyclonic and circumpolar (periodic)

« If continent ends north of #,: a single SUPERGYRE

» |f continent ends south of f,: two separate gyres




latitude

Surface salinity for different continent lengths

Short continent ends at 45S Short continent ends at 21S
Atlantic/ IndoPacific/ Atlantic/ IndoPacific/
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Narrow sinking in both configurations, but qualitative difference in salinity:
Short continent at 45S: SSS is saltier only in far north of sinking basin

Short continent at 21S: SSS Is saltier everywhere in sinking basin



Examples of particle paths in 3D (biweekly dots)

Short continent ends at 45S Short continent ends at 35S
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How much NADW is recycled through the abyssal cell before upwelling”

Mass budget37 < o, < 37.52: smoothed diapycnal velocity (colors)
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Helmholtz decomposition on isopycnals: NADW branch of the ROC

Divergent mass budget 37 < o2 < 37.52: smoothed diapycnal velocity (colors) | 14
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FOX _
NEWS - Some fake news debunked

i. )ﬂ‘x et

« ECCO4 24 years not equilibrated in abyss: ECCO4 is adjoint not a forward model.
* Only altimeter anomalies are used: full altimetry with geoid model using GRACE data.
 Eddy and diapycnal coefficients specified: 3-D fields part of the optimized parameters.

Conclusions

Data estimates of residual overturning circulation differ quantitatively

Interbasin exchange of ROC is geostrophically balanced leading to isopycnal depth differences
Neither simple models nor ECCO4 estimate show cold-route exchange in upper ROC

Theory suggests that cold-route requires Cape Horn in subpolar wind-stress regime

Interbasin and intercell exchanges obscured by the large recirculation of ACC and super gyre

Need to apply diagnostics (Helmholtz decomposition and particle tracking) to eddy-resolving models to
quantify inter-basin and inter-cell exchanges.

ow do these methods compare gquantitatively with traditional water-mass diagnostics from hydrography?



divergent mass budget below sigma2=37.518
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salt budget above sigma2=37. referenced to S,
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salt budget for NADW 37.52>sigma2>37 referenced to S,
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Salt TWA 37.53::02::-37.51 So=34.5
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