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Schematic	of	the	Subpolar	Gyre	circulation	(red:	warm	upper	currents,	blue:	cold	
deep	currents).	Daniault	et	al	(2016)	
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Warm-to-cold	transformation	(and	
some	sinking)	at	high	latitudes	
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pathways	
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DEPTH-space	AMOCz	
DENSITY-space	AMOC𝛔	

Kwon	and	Frankignoul	(2014)	
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AMOC𝛔	intensity	across	A25-OVIDE	line	as	computed	
from	Argo	and	altimetry	data.	Mercier	et	al	(2015)	
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Schematic	of	diapycnal	water	mass	
transformation.	Grist	et	al	(2014),	
based	on	Wallin’s	(1982)	theory.	

AMOC𝛔	intensity	across	A25-OVIDE	line	as	computed	
from	Argo	and	altimetry	data.	Mercier	et	al	(2015)	
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Can we predict AMOC𝛔 variability from surface-forced water 

mass transformation rates ? 
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Results	

We estimate the meridional velocities at 45°N: 
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D	:	Dynamic	height	obtained	from	in	situ	analyses	(CORA	/	EN4	/	ARMOR3D	/	ISHII)	
	

Vs	:	Meridional	surface	geostrophic	velocity	obtained	from	AVISO	

𝑣= 𝑔/𝑓 𝜕𝐷/𝜕𝑥 + 𝑣↓𝑠 	



We estimate the meridional velocities at 45°N: 
	

D	:	Dynamic	height	obtained	from	in	situ	analyses	(CORA	/	EN4	/	ARMOR3D	/	ISHII)	
	

Vs	:	Meridional	surface	geostrophic	velocity	obtained	from	AVISO	

𝑣= 𝑔/𝑓 𝜕𝐷/𝜕𝑥 + 𝑣↓𝑠 	

Zonal integral and accumulation below isopycnal surfaces 
gives the (partial) AMOC𝛔 stream function 

Results	
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We estimate the surface-forced diapycnal volume flux across 𝜎 north of 
45°N:	

𝜎	:	surface	density	(CORA	/	EN4	/	ARMOR3D	/	ISHII)	

Q	:	Surface	heat	flux	(NCEP2	/	ERAI	/	CERES)	
E-P	:	Surface	freshwater	flux	(NCEP2	/	ERAI	)	–	seasonal	

𝑆𝐹𝑂𝐶↓𝜎 = 1/𝛿𝜎 ∬𝜎−𝛿𝜎∕2 
↑𝜎+𝛿𝜎∕2 ▒[− 𝛼𝑄/𝐶↓𝑝  +𝛽𝑆/
1−𝑆 (𝐸−𝑃)]  𝑑𝒜	

Schematic	from	Grist	et	al	(2014)	

45°N	
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Schematic	from	Grist	et	al	(2014)	

45°N	

Applying this formula to a range of isopycnal surfaces 𝜎 gives the 
SFOC𝛔 stream function 

Monitoring the 1994-2015 Subpolar AMOC𝛔  

Results	



For both streamfunction (AMOC𝛔 and SFOC𝛔), we select the maximum ), we select the maximum 
every month, and run annual averaging and 7-year low pass filtering. 

Meridional	Overturning	
Circulation	at	45°N	

Surface-forced	
transformation	north	of	45°N	
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For both streamfunction (AMOC𝛔 and SFOC𝛔), we select the maximum ), we select the maximum 
every month, and run annual averaging and 7-year low pass filtering. 

Meridional	Overturning	
Circulation	at	45°N	

Surface-forced	
transformation	north	of	45°N	

R = 0.87 at lag = 6.5 years and at the 99% confidence level		

NAO	

Monitoring the 1994-2015 Subpolar AMOC𝛔  

Results	



We estimate the AMOC𝛔-driven meridional heat transport at 45°N: 
	

∆𝜃 : mean temperature difference between the upper and lower limbs of 
AMOC↓σ  

𝐻𝑇↓𝜎 = 𝜌↓0 𝐶↓𝑝 ∗max� 𝐴𝑀𝑂𝐶↓𝜎  ∗ ∆𝜃 	

The role of AMOC𝛔 in 1994-2015 heat content trends 
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The role of AMOC𝛔 in 1994-2015 heat content trends 

We compare the 𝑯𝑻↓𝝈 -driven OHC anomalies with actual detrended 
OHC anomalies of the 0-1000m SPG (10°W-70°W; 45°N-65°N):	

𝜌↓0 𝐶↓𝑝 ∗∭↑▒𝜃↑′ 𝑑𝑥𝑑𝑦𝑑𝑧 	

∫↑▒𝐻𝑇↓𝜎 ′ 𝑑𝑡 		
vs	

We estimate the AMOC𝛔-driven meridional heat transport at 45°N: 
	

∆𝜃 : mean temperature difference between the upper and lower limbs of 
AMOC↓σ  

𝐻𝑇↓𝜎 = 𝜌↓0 𝐶↓𝑝 ∗max� 𝐴𝑀𝑂𝐶↓𝜎  ∗ ∆𝜃 	
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Take-Home message #2 

Conclusions	

A causal relationship exists between a reduction in surface-forced water mass transformation rates, the 1994-2015 decline of the 
AMOC𝛔 at 45°N, and the reversal in SPG heat content in 2005 

The 6-7-year delay between surface-forced water mass transformation in the SPG and downstream circulation changes yields 
predictability skills for AMOC𝛔 / MHT and OHC using surface observations alone	

Take-Home message #1 



Not shown today:  

-  Depth-spaced vs. density-spaced AMOC variability 

-  Impact of Labrador Sea Water formation rates on AMOC variability 

-  Nordic Seas vs. SPG contribution to AMOC variability 

-  Efficiency of OSNAP line to capture AMOC variability	

Thank you, any questions ? 

Conclusions	
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𝐻𝑇↓𝜎  =0.42 ±0.04 𝑃𝑊 
𝒂𝒄𝒓𝒐𝒔𝒔 𝟒𝟓°𝑵	𝑄↓𝑁𝐸𝑇  =−0.24±0.04𝑃𝑊 

𝒂𝒄𝒓𝒐𝒔𝒔 𝒕𝒉𝒆 𝑺𝑷𝑮 𝒔𝒖𝒓𝒇𝒂𝒄𝒆	𝐻𝑇↓𝜎  =0.18 𝑃𝑊 𝒕𝒐𝒘𝒂𝒓𝒅 
𝒕𝒉𝒆 𝑵𝒐𝒓𝒅𝒊𝒄 𝑺𝒆𝒂𝒔	

The 1994-2015 time-mean Heat budget in the SPG 
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Increased	transport	of	upper	
LSW	and	decreased	transport	of	

lower	LSW	
	

A	volume	redistribution	
restricted	within	the	lower	limb	

of	the	AMOC	



The	pattern	of	light-to-dense	
transformation	across	𝛔0 = 27.4	
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