

Monitoring the North Atlantic Subpolar Overturning Circulation from surface observations

## Damien Desbruyères and the OVIDE team

Herlé Mercier, Guillaume Maze, Nathalie Daniault, Patricia Zunino, Anne Piron, Pascale Lherminier, Virginie Thierry.

US AMOC 2018 Meeting Miami



# Introduction

The Subpolar AMOC: Overview and Question

# Results

Monitoring the 1994-2015 Subpolar AMOC : a mechanistic approach The role of the AMOC in 1994-2015 heat content trends

Conclusion

Take-home messages #1 and #2



## The Subpolar $AMOC_{\sigma}$ : Overview and Question

Warm waters advected northeastward by the North Atlantic Current



Schematic of the Subpolar Gyre circulation (red: warm upper currents, blue: cold deep currents). Daniault et al (2016)

Warm-to-cold transformation (and some sinking) at high latitudes

Cold waters returning southward via boundary and dispersive interior pathways





## The Subpolar $AMOC_{\sigma}$ : Overview and Question







30

Schematic of diapycnal water mass transformation. Grist et al (2014), based on Wallin's (1982) theory.









We estimate the meridional velocities at 45°N:

 $v = g/f \partial D/\partial x + v \downarrow s$ 

- D: Dynamic height obtained from in situ analyses (CORA / EN4 / ARMOR3D / ISHII)
  - V<sub>s</sub>: Meridional surface geostrophic velocity obtained from AVISO





We estimate the meridional velocities at 45°N:

 $v = g/f \partial D/\partial x + v \downarrow s$ 

- D: Dynamic height obtained from in situ analyses (CORA / EN4 / ARMOR3D / ISHII)
  - V<sub>s</sub>: Meridional surface geostrophic velocity obtained from AVISO



Zonal integral and accumulation below isopycnal surfaces gives the (partial)  ${\sf AMOC}_\sigma$  stream function





We estimate the *surface-forced* diapycnal volume flux across  ${m \sigma}$  north of 45°N:

 $SFOC\downarrow\sigma = 1/\delta\sigma \iint \sigma - \delta\sigma/2$  $\int \sigma + \delta \sigma / 2$  [- $\alpha Q / C \downarrow p + \beta S /$ 1 - J. Surface free fity (Def / EN4 / ARMOR3D / ISHII) Q : Surface heat flux (NCEP2 / ERAI / CERES) E-P : Surface freshwater flux (NCEP2 / ERAI ) - seasonal





We estimate the *surface-forced* diapycnal volume flux across  $\sigma$  north of 45°N:

 $SFOC\downarrow\sigma = 1/\delta\sigma \iint \sigma - \delta\sigma/2$  $\int \sigma + \delta \sigma / 2 = [-\alpha Q / C \downarrow p + \beta S / ]$ 1 - Stifface de la fity (DDA/ EN4 / ARMOR3D / ISHII) Q : Surface heat flux (NCEP2 / ERAI / CERES) E-P: Surface freshwater flux (NCEP2 / ERAI ) - seasonal



Applying this formula to a range of isopycnal surfaces  $\sigma$  gives the SFOC<sub> $\sigma$ </sub> stream function



Schematic from Grist et al (2014)



## Monitoring the 1994-2015 Subpolar AMOC $_{\sigma}$

For both streamfunction (AMOC<sub> $\sigma$ </sub> and SFOC<sub> $\sigma$ </sub>), we select the maximum every month, and run annual averaging and 7-year low pass filtering.





Meridional Overturning Circulation at 45°N Surface-forced transformation north of 45°N

Results **Afremer** 

## Monitoring the 1994-2015 Subpolar AMOC $_{\sigma}$

For both streamfunction ( $AMOC_{\sigma}$  and  $SFOC_{\sigma}$ ), we select the maximum every month, and run annual averaging and 7-year low pass filtering.





Meridional Overturning Circulation at 45°N Surface-forced transformation north of 45°N



R = 0.87 at lag = 6.5 years and at the 99% confidence level



#### The role of AMOC<sub>o</sub> in 1994-2015 heat content trends

We estimate the AMOC<sub> $\sigma$ </sub>-driven meridional heat transport at 45°N:

 $HT\downarrow\sigma = \rho\downarrow0 \ C\downarrowp * \max \ AMOC\downarrow\sigma * \Delta\theta$ 

 $\Delta heta$  : mean temperature difference between the upper and lower limbs of

# ΑΜΟC↓σ







#### The role of AMOC<sub>o</sub> in 1994-2015 heat content trends

We estimate the AMOC<sub> $\sigma$ </sub>-driven meridional heat transport at 45°N:

 $HT\downarrow\sigma = \rho\downarrow0 \ C\downarrowp * \max \ AMOC\downarrow\sigma * \Delta\theta$ 

 $\Delta heta$  : mean temperature difference between the upper and lower limbs of  $AMOC 
arrow \sigma$ 

We compare the *HTJo* -driven OHC anomalies with actual detrended OHC anomalies of the 0-1000m SPG (10°W-70°W; 45°N-65°N):







## Take-Home message #1

A causal relationship exists between a reduction in *surface-forced* water mass transformation rates, the 1994-2015 decline of the AMOC<sub>o</sub> at 45°N, and the reversal in SPG heat content in 2005

### Take-Home message #2

The 6-7-year delay between surface-forced water mass transformation in the SPG and downstream circulation changes yields predictability skills for  $AMOC_{\sigma}$  / MHT and OHC using surface observations alone





# Thank you, any questions ?

### Not shown today:

- Depth-spaced vs. density-spaced AMOC variability
- Impact of Labrador Sea Water formation rates on AMOC variability
  - Nordic Seas vs. SPG contribution to AMOC variability
  - Efficiency of OSNAP line to capture AMOC variability

EXTRA SLIDES

 $AMOC_{\sigma}$  and  $AMOC_{z}$ 

5 Sv

30.2

30.6

31

31.8

32.2

32.6

-5 0

<sup>ل</sup> 31.4

11

31

61

161

611

1061

1991

10 15 20

MEAN DEPTH of  $\sigma_1$  (m)





The 1994-2015 time-mean Heat budget in the SPG

 $HT\downarrow\sigma = 0.42 \pm 0.04 PW$   $across 45^{\circ}N$   $Q\downarrow NET = -0.24 \pm 0.04 PW$  across the SPG surface  $HT\downarrow\sigma = 0.18 PW toward$ the Nordic Seas







EXTRA SLIDES







The pattern of light-to-dense transformation across  $\sigma 0 = 27.4$ 

