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assumptions made in this talk 

•  the audience is familiar with Warm Pool upper ocean processes



•  the audience may be less familiar with the atmospheric response to ocean state


goals of this talk 

•  to present scales of ocean-atmosphere interactions important to the MJO



•  to summarize model deficiencies in their representation of these processes
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 key issues for modeling the MJO:

1.  What maintains convection?


2.  What drives eastward propagation?
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“The atmosphere does not see SST; 
it only senses it through surface fluxes.”

—Chidong Zhang (2005)



AML


OML


atmosphere


coupled processes within the MJO 

ocean


currents
salinity

SST

stability

up
w

el
lin

g!

wind

humidity
stability

cloudiness

radiative
feedbacks

rain

Atmosphere

large scale dynamics
convection

boundary layer physics

mixed layer physics
mixing

currents & internal waves

Ocean

air-sea interface
momentum

rain
solar

atmospheric 
forcing

latent
sensible

IR
ocean 

feedback

understanding air-sea interactions within the 
MJO requires an understanding of processes 
that regulate the AML and OML energy budgets.
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rain what kinds of measurements are needed 
to characterize the AML and OML across 

scales in order to constrain models?
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time scales of air-sea coupled processes 

diurnal
intraseasonal seasonal interannual

calmcalmdisturbed EW
+0.2∘C-0.2∘C

se
ns
ib
le

la
te
nt

intraseasonal

coupled feedbacks in the 
context of the MJO




diurnal
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diurnal air-sea coupled processes 

diurnal

calmcalmdisturbed EW
+0.2∘C-0.2∘C

se
ns
ib
le

la
te
nt

direction of propagation


Ocean response depends upon:

•  light winds, large Qnet

•  weak ocean currents?

•  upper ocean stratification (salinity, T)


Consequences for the atmosphere:

•  DWLs promote convective development, 

low-level convergence

•  DWLs rectify onto intraseasonal SST’

•  MJO propagation


SUMMARY


•  insufficient vertical resolution of upper 
ocean


•  insufficient coupling timestep

•  wind speed, Qnet, rainfall biases (either 

too high or too low)

•  convection too insensitive to column 

humidity


MODEL LIMITATIONS


Bellenger and Duvel 2009
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Ocean response depends upon:

•  wind speed, Qnet

•  ocean currents

•  upper ocean stratification (salinity, T)


Consequences for the atmosphere:

•  reduction of surface pressure over 

warm SST (MJO propagation)

•  column moistening where it’s rainy 

(MJO maintenance)

•  reduced moistening west of convection 

(MJO propagation)


SUMMARY


•  wind speed, AML humidity biases (either 
too high or too low)


•  excessive column drying by 
atmospheric circulations


•  weak cloud-radiation feedbacks


MODEL LIMITATIONS
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Ocean response depends upon:

•  direction of wind forcing (E or W)

•  upper ocean stratification (salinity, T)


Consequences for the atmosphere:

•  surface flux adjustments via wind 

stress-surface current interactions

•  surface advection of warm or cold SST 

anomalies (Halkides et al. 2015)

•  generation of strong, extensive SST 

gradients and low-level convergence 
(convective initiation; Back and 
Bretherton 2009)


SUMMARY


•  wind speed biases (either too high or 
too low)


•  insufficient vertical resolution in ocean 
model


MODEL LIMITATIONS
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seasonal air-sea coupled processes 
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Ocean response depends upon:

•  persistent surface winds

•  “piling up” of surface waters


Consequences for the atmosphere:

•  warm SSTs associated with ER waves 

have been associated with certain types 
of MJO initiation.


SUMMARY


•  convective momentum transport biases 
(either too high or too low)


•  ocean horizontal resolution (at least for 
climate models)


•  little work on these wave types in 
coupled climate models


MODEL LIMITATIONS
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interannual air-sea coupled processes 
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Ocean response depends upon:

•  MJO convection reaching the western 

Pacific

•  sufficiently strong WWB (possibly 

multiple)


Consequences for the atmosphere:

•  significant modulation of mean state 

moisture and MJO propagation (DeMott 
et al. 2018)


SUMMARY


•  an exaggerated “barrier effect” of the 
Maritime Continent for MJO propagation


•  convective momentum transport biases 
(too high or too low)


•  coupled air-sea processes at the edge 
of the Warm Pool?  (see next talk)


MODEL LIMITATIONS
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extra slides




fluxes 
dominate!

dynamics 
dominate!

Halkides et al. (2015)

SST cooling:  fluxes vs dynamics 



air-sea interaction diagnostics 



understanding fluxes in your model 




