Ocean-atmosphere coupled scale interactions in the Madden Julian Oscillation

Charlotte A. DeMott

Department of Atmospheric Science, Colorado State University

TPOS2020, I-3 May 2018, Boulder CO

photo: western Pacific from R/V Vickers, TOGA COARE (C. DeMott)

assumptions made in this talk

- the audience is familiar with Warm Pool upper ocean processes
- the audience may be less familiar with the atmospheric response to ocean state

goals of this talk

- to present scales of ocean-atmosphere interactions important to the MJO
- to summarize model deficiencies in their representation of these processes

scale of the Madden-Julian oscillation

scale of the Madden-Julian oscillation

30N

"active" phase:

cloudy windy cooling/cold SSTs

"suppressed" phase:

fewer clouds calm warming/warm SSTs

scale of the Madden-Julian oscillation

key issues for modeling the MJO:

2. What drives eastward propagation?

coupled processes within the MJO

"The atmosphere does not see SST; it only senses it through surface fluxes." -Chidong Zhang (2005)

coupled processes within the MJO

understanding air-sea interactions within the MJO requires an understanding of processes that regulate the AML and OML energy budgets.

coupled processes within the MJO

what kinds of measurements are needed to characterize the AML and OML across scales in order to constrain models?

time scales of air-sea coupled processes

intraseasonal

diurnal diurnal warm layer

interannual

time scales of air-sea coupled processes

coupled feedbacks in the context of the MJO

Ε

diurnal warm layer

Bellenger and Duvel 2009

diurnal air-sea coupled processes

diurnal warm layers

diurnal warm lave

diurnal

Bellenger and Duvel 2009

diurnal air-sea coupled processes

Ε

SUMMARY

Ocean response depends upon:

- light winds, large Q_{net}
- weak ocean currents?
- upper ocean stratification (salinity, T)

Consequences for the atmosphere:

- **DWLs promote convective development, low-level** convergence
- **DWLs rectify onto intraseasonal SST'**
- **MJO** propagation

MODEL LIMITATIONS

- insufficient vertical resolution of upper ocean
- insufficient coupling timestep
- wind speed, Qnet, rainfall biases (either too high or too low)
- convection too insensitive to column humidity

Hendon and Glick 1997

Hendon and Glick 1997

SUMMARY

Ocean response depends upon:

- wind speed, Qnet
- ocean currents

Ε

• upper ocean stratification (salinity, T)

Consequences for the atmosphere:

- reduction of surface pressure over warm SST (MJO propagation)
- column moistening where it's rainy (MJO maintenance)
- reduced moistening west of convection (MJO propagation)

MODEL LIMITATIONS

- wind speed, AML humidity biases (either too high or too low)
- excessive column drying by atmospheric circulations
- weak cloud-radiation feedbacks

feedbacks

Moum et al. 2014

equatorial surface momentum feedbacks

Moum et al. 2014

SUMMARY

Ocean response depends upon:

- direction of wind forcing (E or W)
- upper ocean stratification (salinity, T)

Consequences for the atmosphere:

- surface flux adjustments via wind stress-surface current interactions
- surface advection of warm or cold SST anomalies (Halkides et al. 2015)
- generation of strong, extensive SST gradients and low-level convergence (convective initiation; Back and Bretherton 2009)

MODEL LIMITATIONS

- wind speed biases (either too high or too low)
- insufficient vertical resolution in ocean model

Ε

Rydbeck and Jensen 2017

downwelling oceanic ER waves

Rydbeck and Jensen 2017

SUMMARY

Ocean response depends upon:

- persistent surface winds
- "piling up" of surface waters

Consequences for the atmosphere:

 warm SSTs associated with ER waves have been associated with certain types of MJO initiation.

MODEL LIMITATIONS

- convective momentum transport biases (either too high or too low)
- ocean horizontal resolution (at least for climate models)
- little work on these wave types in coupled climate models

Ε

interannual air-sea coupled processes

McPhaden 2004

interannual air-sea coupled processes

McPhaden 2004

SUMMARY

Ocean response depends upon:

- MJO convection reaching the western Pacific
- sufficiently strong WWB (possibly multiple)

Consequences for the atmosphere:

 significant modulation of mean state moisture and MJO propagation (DeMott et al. 2018)

MODEL LIMITATIONS

- an exaggerated "barrier effect" of the Maritime Continent for MJO propagation
- convective momentum transport biases (too high or too low)
- coupled air-sea processes at the edge of the Warm Pool? (see next talk)

summary of MJO coupled processes

	Diurnal	Intraseasonal (fluxes) (momentum)		Seasonal	Interannual
key atmospheric conditions	calm winds low cloudiness	alternating periods of suppressed and active convectionmultiple days of persistent easterly or westerly winds		multiple days of easterly (ER) or westerly (KW) winds	MJO in WPac, WW
key ocean dependencies	reduced currents OML shoaling	regulated by surface currents, stratification	upper ocean stratification	reduced upper ocean stratification?	deep mixing or surface advection
observational gaps	high-frequency stratification measurements	high-frequency AML humidity, ocean stratification	high vertical resolution stratification measurements		ocean stratificatior
model shortcomings	convection-humidity biases, ocean resolution, coupling frequency	convection-humidity biases (BL, free trop), ocean resolution, coupling frequency	MJO fidelity, ocean vertical resolution	coarse ocean horizontal resolution, insufficient study	MJO fidelity, WPac coupled processes?

summary of MJO coupled processes

	Diurnal	Intraseasonal (fluxes)	Intraseasonal (momentum)	Seasonal	Interannual
key atmospheric conditions	calm winds low cloudiness	alternating periods of suppressed and active convection	multiple days of persistent easterly or westerly winds	multiple days of easterly (ER) or westerly (KW) winds	MJO in WPac, WW
key ocean dependencies	reduced currents OML shoaling	regulated by surface currents, stratification	egulated by surface currents, stratification upper ocean stratification		deep mixing or surface advection
observational gaps	high-frequency stratification measurements	high-frequency AML humidity, ocean stratification measurements			ocean stratificatio
model shortcomings	convection- humidity biases, ocean resolution , coupling frequency	convection- humidity biases (BL, free trop), ocean resolution , coupling frequency	MJO fidelity, ocean vertical resolution	coarse ocean horizontal resolution , insufficient study	MJO fidelity, WPac coupled processes?

extra slides

SST cooling: fluxes vs dynamics

Halkides et al. (2015)

air-sea interaction diagnostics

Air Sea Interactions Diagnostic Plots

Page developed by M. Burt and C. DeMott

created on Wed Apr 4 19:50:07 UTC 2018

ERAI

Level 1 Diagnostics	May-Oct	Nov-Apr		
Rain Wind SST Flux	<u>plot</u>	<u>plot</u>		
Surface Energy Budget	<u>plot</u>	<u>plot</u>		
LH Flux Component Std diff	<u>plot</u>	<u>plot</u>		
SH Flux Component Std diff	<u>plot</u>	<u>plot</u>		
LH Flux Component Stdev Ratio	<u>plot</u>	<u>plot</u>		
SH Flux Component Stdev Ratio	<u>plot</u>	<u>plot</u>		
RH by Wind SST PDF	<u>plot</u>	<u>plot</u>		
U850 Westerly Percent	<u>plot</u>	<u>plot</u>		
MSE	<u>plot</u>	<u>plot</u>		
SST skewness	<u>plot</u>	plot		
Level 2 Diagnostics	May-Oct	Nov-Apr		
MSE Budget prop	<u>plot</u>	<u>plot</u>		
LH Flux Component prop	<u>plot</u>	<u>plot</u>	\mathbf{i}	
SH Flux Component prop	<u>plot</u>	<u>plot</u>		
Surface Energy Balance prop	<u>plot</u>	<u>plot</u>		
MSE Budget (no prop)	<u>plot</u>	<u>plot</u>		
LH Flux Component (no prop)	<u>plot</u>	<u>plot</u>		
SH Flux Component (no prop)	<u>plot</u>	<u>plot</u>		
Surface Energy Balance (no prop)	<u>plot</u>	<u>plot</u>		
SST Effect Rain LH lags	<u>plot</u>	<u>plot</u>		
SST Effect Rain SH lags	<u>plot</u>	- plot		
SST Effect (no prop)	<u>plot</u>	<u>plot</u>		,
Surface Energy Lags	<u>plot</u>	<u>plot</u>		4
Rainfall Wheeler-Kiladis plots (Sym)	plot			
Rainfall Wheeler-Kiladis plots (Asym)	<u>plot</u>			
Level 3 Diagnostics	May-Oct	Nov-Apr		
MSE Budget Regression	plot	plot		
dMSEdt LH Flux Comp regressions	plot	plot		
dMSEdt SH Flux Comp regressions	plot	plot		2
MSE LH Flux Comp regressions	plot	plot		
MSE SH Flux Comp regressions	plot	plot		
Onet dSSTdt regression man	plot	plot		
SST Effect Summarv	plot	plot		
MSE Budget PDF Line	nlot	plot		
MSE Mod Projection Mans	nlot	nlot		

ERAI Nov-Apr

understanding fluxes in your model

SPCCSM Nov-Apr

