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assumptions made in this talk 

•  the audience is familiar with Warm Pool upper ocean processes

•  the audience may be less familiar with the atmospheric response to ocean state

goals of this talk 

•  to present scales of ocean-atmosphere interactions important to the MJO

•  to summarize model deficiencies in their representation of these processes
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scale of the Madden-Julian oscillation 
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direction of propagation key issues for modeling the MJO:
1.  What maintains convection?

2.  What drives eastward propagation?



coupled processes within the MJO 
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“The atmosphere does not see SST; 
it only senses it through surface fluxes.”

—Chidong Zhang (2005)
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understanding air-sea interactions within the 
MJO requires an understanding of processes 
that regulate the AML and OML energy budgets.
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scales in order to constrain models?
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time scales of air-sea coupled processes 
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diurnal air-sea coupled processes 
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Ocean response depends upon:
•  light winds, large Qnet
•  weak ocean currents?
•  upper ocean stratification (salinity, T)

Consequences for the atmosphere:
•  DWLs promote convective development, 

low-level convergence
•  DWLs rectify onto intraseasonal SST’
•  MJO propagation

SUMMARY

•  insufficient vertical resolution of upper 
ocean

•  insufficient coupling timestep
•  wind speed, Qnet, rainfall biases (either 

too high or too low)
•  convection too insensitive to column 

humidity

MODEL LIMITATIONS

Bellenger and Duvel 2009
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intraseasonal air-sea coupled processes 
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Ocean response depends upon:
•  wind speed, Qnet
•  ocean currents
•  upper ocean stratification (salinity, T)

Consequences for the atmosphere:
•  reduction of surface pressure over 

warm SST (MJO propagation)
•  column moistening where it’s rainy 

(MJO maintenance)
•  reduced moistening west of convection 

(MJO propagation)

SUMMARY

•  wind speed, AML humidity biases (either 
too high or too low)

•  excessive column drying by 
atmospheric circulations

•  weak cloud-radiation feedbacks

MODEL LIMITATIONS

surface flux 
feedbacks



intraseasonal air-sea coupled processes 

calmcalmdisturbed EW
+0.2∘C-0.2∘C

se
ns
ib
le

la
te
nt

direction of propagation

equatorial 
surface 

momentum 
feedbacks

intraseasonal

Moum et al. 2014

AML

OML

atmosphere

OML typically 
shallow

AML depth 
variable

W wind

stable stratification 
(salinity and/or T)

E wind



intraseasonal air-sea coupled processes 
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Ocean response depends upon:
•  direction of wind forcing (E or W)
•  upper ocean stratification (salinity, T)

Consequences for the atmosphere:
•  surface flux adjustments via wind 

stress-surface current interactions
•  surface advection of warm or cold SST 

anomalies (Halkides et al. 2015)
•  generation of strong, extensive SST 

gradients and low-level convergence 
(convective initiation; Back and 
Bretherton 2009)

SUMMARY

•  wind speed biases (either too high or 
too low)

•  insufficient vertical resolution in ocean 
model

MODEL LIMITATIONS
equatorial 

surface 
momentum 
feedbacks



seasonal air-sea coupled processes 
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seasonal air-sea coupled processes 
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Ocean response depends upon:
•  persistent surface winds
•  “piling up” of surface waters

Consequences for the atmosphere:
•  warm SSTs associated with ER waves 

have been associated with certain types 
of MJO initiation.

SUMMARY

•  convective momentum transport biases 
(either too high or too low)

•  ocean horizontal resolution (at least for 
climate models)

•  little work on these wave types in 
coupled climate models

MODEL LIMITATIONS
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interannual air-sea coupled processes 
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Ocean response depends upon:
•  MJO convection reaching the western 

Pacific
•  sufficiently strong WWB (possibly 

multiple)

Consequences for the atmosphere:
•  significant modulation of mean state 

moisture and MJO propagation (DeMott 
et al. 2018)

SUMMARY

•  an exaggerated “barrier effect” of the 
Maritime Continent for MJO propagation

•  convective momentum transport biases 
(too high or too low)

•  coupled air-sea processes at the edge 
of the Warm Pool?  (see next talk)

MODEL LIMITATIONS
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extra slides
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Halkides et al. (2015)

SST cooling:  fluxes vs dynamics 



air-sea interaction diagnostics 



understanding fluxes in your model 




