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Miativation Atlantic ‘

50 The Atlantic Ocean and an Actual Debate in Climate
Science

Scientists have recently begun to re-examine a scary question: Will a crucial
ocean current shut down?
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Overlooked possibility of a collapsed Atlantic
Meridional Overturning Circulation in warming climate

Wei Liu,'*" Shang-Ping Xie," Zhengyu Liu,” Jiang Zhu?

Changes in the Atlantic Meridional Overturning Circulation (AMOC) are moderate in most climate model projections
under increasing greenhouse gas forcing. This intermodel consensus may be an artifact of common model biases that
favor a stable AMOC. Observationally based freshwater budget analyses suggest that the AMOC is in an unstable re-
gime susceptible for large changes in response to perturbations. By comrecting the model biases, we show that the
AMOC collapses 300 years after the atmospheric CO, concentration is abruptly doubled from the 1990 level. Compared
to an uncorrected model, the AMOC collapse brings about large, markedly different climate responses: a prominent
cooling over the northern North Atlantic and neighboring areas, seaice increases over the Greenland-lceland-Norwegian
seas and to the south of Greenland, and a significant southward rain-belt migration over the tropical Atlantic. Our results
highlight the need to develop dynamical metrics to constrain models and the importance of reducing model biases in
long-term climate projection.
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Key idea in the background

North Latitude
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Density of waters in North
Atlantic....

... is lower than density of
waters upwelling in the
Southern Ocean.

This implies a mechanically
driven overturning, even
down to the depth of the
AMOC. (Gnanadesikan et
al. J. Clim., 2005)
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a: NH Overturning
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Overturning in Sv
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Density vs. overturnin
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Flux correction moves the
low mixing model away
from the instability point,
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Cantrast: Resistan
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