Flux correction and AMOC stability: Results from a dynamical box model

Anand Gnanadesikan, Richard Kelson and Michaela Sten

Johns Hopkins University

2018 AMOC/RAPID Workshop
The Atlantic Ocean and an Actual Debate in Climate Science

Scientists have recently begun to re-examine a scary question: Will a crucial ocean current shut down?

CLIMATOLOGY

Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate

Wei Liu,1,*† Shang-Ping Xie,1 Zhengyu Liu,2 Jiang Zhu2

Changes in the Atlantic Meridional Overturning Circulation (AMOC) are moderate in most climate model projections under increasing greenhouse gas forcing. This intermodel consensus may be an artifact of common model biases that favor a stable AMOC. Observationally based freshwater budget analyses suggest that the AMOC is in an unstable regime susceptible for large changes in response to perturbations. By correcting the model biases, we show that the AMOC collapses 300 years after the atmospheric CO₂ concentration is abruptly doubled from the 1990 level. Compared to an uncorrected model, the AMOC collapse brings about large, markedly different climate responses: a prominent cooling over the northern North Atlantic and neighboring areas, sea ice increases over the Greenland-Iceland-Norwegian seas and to the south of Greenland, and a significant southward rain-belt migration over the tropical Atlantic. Our results highlight the need to develop dynamical metrics to constrain models and the importance of reducing model biases in long-term climate projection.
Key question

• Does flux-correcting a model improve our estimate of how big a perturbation in freshwater flux is required to shut off the overturning?

• Trivial answer: yes if a model is biased because it gets fluxes wrong.

• But what if biases are due to getting the physics of the model wrong?
Why this is a hard question to answer

- Model biases have many sources
 - Clouds
 - Lateral mixing
 - Geometry of the winds

- Exploring the full range with coupled models, even relatively simple ones, is difficult and sometimes hard to interpret physically.

- Strategy: use a simple model where we can identify what has changed (see also Richard Wood’s poster)
Density of waters in North Atlantic....

... is lower than density of waters upwelling in the Southern Ocean.

This implies a mechanically driven overturning, even down to the depth of the AMOC. (Gnanadesikan et al. J. Clim., 2005)
Basic idea

- Use a dynamical box model where we “know” the correct answer for stability.
- Change physical parameters in the model to change the stability of overturning.
- See whether “correcting” model with perturbed physics to have the right density difference between tropics and North Atlantic gives us a more realistic estimate of marginal stability.
Structure of model

Gnanadesikan, 1999 as modified by Johnson, Marshall and Sproson, 2007
Closures for fluxes

\[M\downarrow n = g(\rho\downarrow \text{North} - \rho\downarrow \text{Low})/\rho\downarrow 0 \epsilon D\uparrow 2 \]

\[M\uparrow \text{upw} = K\downarrow v A\downarrow \text{Low} / D \]

\[M\downarrow \text{eddy} = A\downarrow GM * D * L\downarrow x\uparrow s / L\downarrow y\uparrow s \]

\[M\downarrow e k = \tau\downarrow x\uparrow s L\downarrow x\uparrow s / \rho \]

\[M\downarrow L N, L S = A\downarrow Redi \ L\downarrow x\uparrow s, n \]

Values in red often vary significantly between models.
Examples of cross-model variability

Surface winds in Southern Ocean, (Meijers, 2014)

$A_{\downarrow GM}, A_{\downarrow Red_i}$: Varies from <200 to 2000 m2/s across models

Resistance parameter within single model with different forcing (Levermann and Furst, 2010)
What happens as we increase NH freshwater flux?

Two basic states

Shallow thermocline, SH eddies return small fraction of Ekman flux.

Deep thermocline eddies return Ekman+ LL upwelling flux.
What can we say about stability?

If we get the freshwater flux correct, we will have too large a density difference. The high mixing model will be too stable, while the low mixing model will be too unstable.

Graphs showing:
- **a: NH Overturning**
- **b: SH Overturning**
- **c: Low latitude thermocline depth**
- **d: Density difference N-Low**
Density vs. overturning: Different

Flux correction moves the low mixing model away from the instability point, moves the high mixing model towards it.

Even though there is no way to flux correct the perturbed models to get the right overturning...

Collapse occurs at roughly the same density difference.

Flux correction gets about 80% of the answer.
Transition to low AMOC occurs at a more similar density differences.... but reverse transition does not.
Different models have the same relationship between density and freshwater flux....

But collapse occurs at different values of density difference. Flux correcting high-resistance model to get density near collapse will always result in collapse.
Conclusions

• Flux adjustment can improve estimates of stability due to physical biases in mixing and winds...
• But not to biases in the “efficiency” of overturning (associated with geometry of overturning, resolution).
• Fixing biases for collapsing AMOC doesn’t necessarily fix biases for reestablishing AMOC

Future work
• more complex geometry (Cessi and Jones, 2017)
• Details of wind forcing

For more info: https://pages.jh.edu/~agnanad1/AMOC_stability.pdf