

Assessing uncertainties on the stability of the AMOC during Heinrich events using simulations from one Earth System model.

Marlos Goes^{1,2} Lisa N. Murphy³, and Amy Clement³

Univ. Miami - CIMAS
NOAA/AOML
Univ. Miami - RSMAS

2018 International Science AMOC meeting July 24-27, 2018 | Coconut Grove, Florida

Heinrich Stadials (HS1)

Heinrich Stadial events are millennial scale cooling events associated with the drying in the northern tropics (Mulitza et al., 2008; Niedermeyer et al., 2009).

HS1

Adapted from Fig. 4 from McGee et al. (2013)

Increased dust over the north Atlantic. (Mulitza et al., 2008; Niedermeyer et al., 2009). HS1 dust fluxes over the North Atlantic were a factor of ~2.6 higher than mean 0–2ka fluxes .

Model experiments

<u>Objective</u>: What is the impact of the enhanced dust loading on ocean circulation during HS1?

- University of Victoria Earth system model (UVic2.9).
- 1000 year simulations with at least 3000 years of spinup under LGM boundary conditions.
- HS1 FW forcing applied as a virtual flux hosing between 45°N and 65°N.

The Role of African Dust in Atlantic Climate During Heinrich Events

(Murphy, Goes, and Clement, Paleoceanography 2017).

Dust cools and freshens the North Atlantic

Dust feedbacks can potentially amplify Heinrich events by cooling and freshening the North Atlantic.

Uncertainties: Wind forcing

Mean Wind Stress in the Atlantic

CAM LGM Winds – Derived from CAM4 anomalies (LGM – PI).

- **Uvic LGM winds** Calculated in Uvic.
- **NCEP PD winds** NCEP reanalysis climatology.

Two wind forcing:

i) Standard UVic winds;

ii) **CAM4** SLP anomalies (LGM – PI; Murphy et al., 2014). Wind anomalies are calculated using a geostrophic/ diffusive approximation (Goes et al., 2014).

Uncertainties: Dust forcing

• Effect of dust radiative forcing dependent on the state of the AMOC Uvic winds: Weaker AMOC (13 Sv). Dust decreases strength by 20-25%. CAM winds: Stronger AMOC (22Sv). Negligible difference.

Mean freshwater fluxes

$$FWCA = \frac{1}{S_0} \frac{\partial S'}{\partial t} = Mov + Maz - E_{NET} + Res = 0$$

Uncertainties: FW forcing (hosing)

Different amount of hosing applied for 200 years.

- Bifurcation may occur from dust feedback in Uvic winds (bistable).
- Dust may delay the recovery for a couple decades in CAM winds (stable).
- All simulations consistent with salinity feedback.

Assessing the uncertainties of the AMOC strength on the AMOC stability

- LGM boundary conditions (~19ka).
- 2 Background wind forcings: Uvic x CAM.
- Hosing experiments: 0.2 Sv applied to the North Atlantic between 45°N-70°N.
- Background vertical mixing: Brian-Lewis parameterization with variable
 α values:

$$Kv = \alpha + \frac{\beta}{\pi}$$
. arctan $\gamma(z - z_0)$
Range (units): $\alpha \sim 0.6-1.0 \times 1e^{-4} \text{ m}^2\text{s}^{-1}$

Hosing FW=0.2 Sv

- AMOC *collapses* in all simulations using **Uvic winds**.
- AMOC *recovers* in all simulations using CAM winds, with recovery time shorter for stronger Kv.
- Stronger **NH winds** shortens the recovery time.

Control ventilation depth

• Stronger CAM winds shifts ice edge and ventilation depth northward relative to Uvic winds.

AMOC in density space

- The AMOC in CAM winds shows the NADW in a denser range.
- NADW flows further southward.

Salinity differences (CAM-UVic)

- Stronger NH winds increase evaporation in the North Atlantic and salinity in the northern subpolar gyre (positive feedback).
- Stronger SH winds increase upwelling of the AAIW in the tropics, decreasing salinity there (negative feedback).

Summary

- **NH winds** drive the stability of the AMOC, strengthens depth stratification and deepens the NADW.
- Stronger SH winds have a destabilizing effect on AMOC. Results suggest that they increase the AAIW and upwelling in the tropics, freshening the surface. However, it is a secondary effect.
- Vertical mixing changes the mean state of the AMOC, but not its structure/stratification.

Thank you