

Sea-ice control on glacial-interglacial circulation changes, deep ocean ventilation, and carbon storage

Alice Marzocchi and Malte Jansen

alice.marzocchi@noc.ac.uk

Glacial-interglacial transitions: ocean's role?

data from Petit et al. (1999)

Observational and paleoclimate record

preindustrial

Last Glacial Maximum

 $\delta^{13}C$ data from Western Atlantic

Curry and Oppo (2005)

Changes in ocean circulation

What drives glacial-interglacial water masses reorganization? Key player: Antarctic sea ice

Glacial Antarctic sea-ice expansion

Glacial Southern Ocean:

+++ sea-ice formation/export
+++ buoyancy loss rates

Globally:

+++ stratification --- AMOC depth

(e.g. Shin et al., 2003; Ferrari et al., 2014; Jansen, 2017)

LGM: up to 7° equatorward expansion (e.g. Gersonde et al., 2005; Benz et al., 2016)

Idealized ocean-sea-ice simulations

MITgcm

single basin with re-entrant channel

 $1^{\circ} \times 1^{\circ}$ horizontal resolution 29 vertical levels

prescribed P-E, winds and atm temperatures

Coupled to dynamic sea-ice model

CCSM3 simulation (Otto-Bliesner et al., 2006)

Marzocchi and Jansen (2017)

From ocean circulation to carbon storage

From ocean circulation to carbon storage

preindustrial

Last Glacial Maximum

60

0

Ventilation age

age tracer = 0 at surface 3500 (not under sea ice) 3000 2500 2000 Age [yrs] 1500 1000 sea ice **NOT** inhibiting ventilation 500

Idealized simulations forced by atm cooling

coupled to biogeochemical model

coupled to atmospheric "box"

Carbon pump decomposition

(e.g. Ito and Follows, 2005, 2013; Goodwin et al., 2008; Lauderdale et al., 2013)

glacial-interglacial pCO₂ variations: 80-90 ppm

Summary and conclusions

Idealized ocean-ice-biogeochem. simulations:

- During glacials, enhanced Antarctic sea-ice formation/export increases buoyancy loss and stratification, leading to AMOC shoaling
- Circulation changes and expanded Antarctic sea-ice cover decrease glacial deep-ocean ventilation and increase carbon storage

 Physical changes alone result in about half of glacial-interglacial pCO₂ variation

AMOC transient & equilibrium solutions: a cautionary tale

Jansen et al. (2018)