Adjoints as a Tool for Observing System Design: with applications to AMOC

Nora Loose (University of Bergen) Patrick Heimbach & Helen Pillar (UT Austin) Helen Johnson & David Marshall (Oxford University) So Takao (Imperial College London)

2018 International AMOC Science Meeting, Miami, July 2018

Aims

- We aim to show that adjoint modelling is a powerful tool for:
 - 1. Identifying critical observation uncertainties

2. Exploring potential proxy information of observations

Background: Adjoint Models

 The adjoint of an OGCM provides the local linear sensitivity of an output scalar Quantity of Interest (Qol) to all model controls (x) as a function of control lead time (T_{lead}):

$$\frac{\partial \text{QoI}}{\partial \mathbf{x}}(x, y, z, \text{T}_{\text{lead}}) \qquad \text{for } \mathbf{x} = \mathbf{x}_{\text{boundary}} + \mathbf{x}_{\text{initial}} + \mathbf{x}_{\text{params}}$$

 They reveal all viable dynamical mechanisms via which perturbations in x influence the Qol.

Background: Adjoint vs Forward Sensitivity

Forward sensitivity study

Result: Impact of a single input perturbation on all model outputs

Adjoint sensitivity study

Helen Pillar (UT Austin)

Adjoints for Observing System Design

July 24, 2018 4/11

PART 1:

Adjoints applied to dynamical attribution

Helen Pillar (UT Austin)

Adjoints for Observing System Design

July 24, 2018

Aims

- We aim to show that adjoint modelling is a powerful tool for:
 - 1. Identifying critical observation uncertainties

2. Exploring potential proxy information of observations

Aims

• We aim to show that adjoint modelling is a powerful tool for:

1. Identifying critical observation uncertainties

case study: key atmospheric uncertainties for **MOC**_{RAPID} estimates

2. Exploring potential proxy information of observations

Helen Pillar (UT Austin)

Model:

- Quasi-global (74°N and 78°S) MITgcm
- grid = $1^{\circ}x1^{\circ}$, 33 levels
- forcing = NCEP II air-sea flux climatology
 - + OMIP runoff climatology
 - + restoring to SSS/SST climatology
 - (all climatologies = 12 x monthly-mean repeating)
- subgrid = KPP mixing + GM eddy schemes
- Qol = monthly-mean MOC_{RAPID}
- controls = τ^x , τ^y , Q, (E-P)
- max $T_{lead} = 15$ years

MOCRAPID air-sea flux sensitivity

Pillar et al., 2016

Helen Pillar (UT Austin)

Adjoints for Observing System Design

July 24, 2018 5/11

MOCRAPID air-sea flux sensitivity

Pillar et al., 2016

Helen Pillar (UT Austin)

MOCRAPID air-sea flux sensitivity

Helen Pillar (UT Austin)

MOC_{RAPID} air-sea flux sensitivity

Externally Forced MOCRAPID Variability

$$\Delta \text{MOC}_{\text{RAPID}}(t,F) = \sum_{\text{T}_{\text{lead}}}^{15 \text{ yrs}} \int \int \frac{\partial \text{MOC}_{\text{RAPID}}}{\partial F}(x,y,\text{T}_{\text{lead}}) \Delta F(x,y,t-\text{T}_{\text{lead}}) \, dx \, dy$$

 $\Delta F = \mathbf{NCEPII}$ monthly anomalies about the seasonal climatology

Externally Forced MOCRAPID Uncertainty

$$\Delta \text{MOC}_{\text{RAPID}}(t,F) = \sum_{\text{T}_{\text{lead}}}^{15 \text{ yrs}} \int \int \frac{\partial \text{MOC}_{\text{RAPID}}}{\partial F}(x,y,\text{T}_{\text{lead}}) \Delta F(x,y,t-\text{T}_{\text{lead}}) \, dx \, dy$$

 $\Delta F =$ **NCEPI/ NCEPI/ ERA-INT/ JRA55/ 20CR** monthly anomalies

July 24, 2018 6/11

Externally Forced MOCRAPID Uncertainty

$$\Delta \text{MOC}_{\text{RAPID}}(t,F) = \sum_{\text{T}_{\text{lead}}}^{15 \text{ yrs}} \int \int \frac{\partial \text{MOC}_{\text{RAPID}}}{\partial F}(x,y,\text{T}_{\text{lead}}) \Delta F(x,y,t-\text{T}_{\text{lead}}) \, dx \, dy$$

 $\Delta F =$ **NCEPI/ NCEPI/ ERA-INT/ JRA55/ 20CR** monthly anomalies

WHERE?

Pillar et al., 2018

Helen Pillar (UT Austin)

Adjoints for Observing System Design

July 24, 2018 7/11

WHERE?

Pillar et al., 2018

Helen Pillar (UT Austin)

Adjoints for Observing System Design

July 24, 2018 7/11

Helen Pillar (UT Austin)

PART 2:

Adjoints applied to observing system design

Helen Pillar (UT Austin)

Adjoints for Observing System Design

July 24, 2018

Aims

• We aim to show that adjoint modelling is a powerful tool for:

1. Identifying critical observation uncertainties *case study: key atmospheric uncertainties for* **MOC**_{RAPID} *estimates*

2. Exploring potential proxy information of observations

Helen Pillar (UT Austin)

Aims

• We aim to show that adjoint modelling is a powerful tool for:

1. Identifying critical observation uncertainties *case study: key atmospheric uncertainties for* **MOC**_{RAPID} *estimates*

2. Exploring potential proxy information of observations

case study: constraints on T_{EG} provided by MHT_{OSNAP-E} (Loose et al. 2018)

Inverse Modelling Framework:

- Global MITgcm in ECCOv4 (Forget et al., 2015)
- grid = $1^{\circ}x1^{\circ}$, 50 levels
- forcing = optimised atmospheric state (1992-2011) with bulk formulae
- subgrid = KPP mixing + GM eddy schemes
- Qol = 5yr-mean T_{EG} (150-550m)
- Obs = 5yr-mean MHT_{OSNAP-E}
- controls = τ^x , τ^y , $R_{SW\downarrow}$, $R_{LW\downarrow}$, q, T_{atm} , P

TEG Forcing Sensitivity

Linear sensitivities for Qol (T_{EG}) (prior weighted and normalised)

Loose et al., 2018

TEG Forcing Sensitivity

Linear sensitivities for Qol (T_{EG}) (prior weighted and normalised)

Loose et al., 2018

TEG vs. MHTOSNAP-E Forcing Sensitivity

Helen Pillar (UT Austin)

TEG vs. MHTOSNAP-E Forcing Sensitivity

TEG vs. MHTOSNAP-E Forcing Sensitivity

Linear sensitivities for Qol (T_{EG}) (prior weighted and normalised) ≈ information required to reduce Qol uncertainty Linear sensitivities for Obs (MHT_{OSNAP-E}) (prior weighted and normalised) ≈ information transmitted by the observing system

Exploring Proxy Potential of Existing Arrays

Helen Pillar (UT Austin)

Exploring Proxy Potential of Existing Arrays

Helen Pillar (UT Austin)

Adjoints for Observing System Design

July 24, 2018 10/11

Exploring Proxy Potential of Existing Arrays

Helen Pillar (UT Austin)

Adjoints for Observing System Design

July 24, 2018 10/11

Conclusions

Adjoint modelling is a powerful tool for:

(1) Identifying critical observation uncertainties

- sensitivities reveal key space-time origins of most potent uncertainties

(2) Exploring potential proxy information of observations

- sensitivities allow comparison of information required to monitor QoI and information transmitted by the observing system.

Case Study Results:

- (1) Critical air-sea flux uncertainty for $MOC_{RAPID} = Lab$. Sea. winter heat flux
- (2) OBSERVED MHT_{OSNAP-E} is a useful proxy for UNOBSERVED subsurface T_{EG}
- Benefits of adjoint-based approach include:
 - ☑ unambiguous dynamical attribution of uncertainty impacts
 - ☑ nesting within inverse modelling framework (view full space/time context)

 - ☑ includes quantification of role of observation noise and prior uncertainty
 - ✓ assessment of complementarity in systems of multiple observations

Helen Pillar (UT Austin)

Adjoints for Observing System Design

July 24, 2018 11/11

REFERENCES

- Forget, G., J.-M. Campin, P. Heimbach, C. Hill, R. Ponte, and C. Wunsch, 2015: ECCO version 4: an integrated framework for non-linear inverse modelling and global ocean state estimation. *Geosci. Model Dev.* 8, 3071-3104.
- Jones, D. G. Forget, B. Sinha, S. Josey, E. Boland, A. Meijers, and E. Shuckburgh, 2018: Local and Remote Influences on the Heat Content of the Labrador Sea: An Adjoint Sensitivity Study. *JGR Oceans*, 123, 2646-2667.
- Loose, N. and P. Heimbach 2018: Uncertainty Quantification and Observing System Design in the North Atlantic (*in prep.*)
- Lozier, M. S., S. Bacon, A. Bower, S. Cunningham, M.F. de Jong, L. de Steur., et al., 2017: Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System. *BAMS*, 98, 737-752.
- Pillar, H., P. Heimbach, H. Johnson, and D. Marshall, 2016: Dynamical Attribution of Recent Variability in Atlantic Overturning. *J. Climate*, **29**, 3339-3352.
- Pillar, H., H. Johnson, D. Marshall, P. Heimbach and S. Takao, 2018: Impacts of Atmospheric Reanalysis Uncertainty on Atlantic Overturning Estimates at 25°N. *J. Climate*, (*in revision*).
- Yeager, S. and J. Robson, 2017: Recent progress in understanding and predicting Atlantic decadal climate variability. *Curr Clim Change Rep.* 3, 112-127.