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Al SHOULD WE EXFEGES
FROM CDA!

+ CDA can amalgamate the entire observation network,
creating a full 3D picture of the Earth System using known

(modeled) physics to fill in the gaps (both spatially and temporally).

* In this process, CDA can point to discrepancies between
observing platforms and modeling system:s.

« CDA can amplify the impact of observations by allowing
them to Impact across domains (e.g. ocean to atmos or atmos to
Eacan )



WHAIT SHOULD WE NOT
FEREECT

DA s limited by the quality of its inputs -

he model attractor must map to the desired

scales of the nature attractor (otherwise
forecasts have mild to severe biases).

- [he observing system must constrain the

unstable modes of the model system (otherwise
even well modeled dynamics produce growing errors).



A AS PART OF TS
SCIENTIFIC METHOD

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,

Develop or reading. Think of
General Theories Interesting
G | theori th -
consistent with most or a Questions
available data and with other Why does that

current theories. pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the

phenomenon | am

wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...
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A AS PART OF T
SCIENTIFIC METHOD
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WMO WHITE e
PAPER ON CDA

Integrated Earth S)'Is;c Ana ysis and
Prediction: Goals, Challenges and
Recommendations

WEATHER CLIMATE WATER

WP

WORLD
METEOROLOGICAL
ORGANIZATION

Penny et al,, (2017): https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final WWRP 2017 3 27 July.pdf



https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2017_3_27_July.pdf

KEY RECOMMENDATIONS
RELEVANT TO TPOS-2020

 Standardize the observing network for all Earth system domains in order to meet
the timeliness and quality control requirements of NWP

- Identify gaps in the observing system that are essential for constraining CDA
applications, including fluxes at the domain interfaces;

* Develop CDA methods that can accommodate multiple spatiotemporal scales in
support of the seamless prediction paradigm:;

» Develop methods for CDA to identify, isolate, and elucidate model errors and biases
that degrade forecast skill, which can then be used to directly improve coupled
modeling;

» Promote improved representation of model uncertainty in the coupled forecast
system using stochastic physics and other advanced methods;

» Perform research to increase knowledge on how to best represent evolving errors in

non-atmospheric model components (e.g. sea ice, land and ocean) on the timescales
of NWP;

Penny et al., (2017): https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final WWRP 201/ 3 2/ July.pdf
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HOW WILL CDA USE
OBSERVATIONS

* () Cross-domain influence

» (2) Constraining chaotic dynamics of a dynamical
model (e.g. via state estimation / inrtialization).

* (3) ldentifying and correcting model biases, tuning
model parameters.
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e AIND SURFACE
WIND INTERACTION

» Stability of atmospheric boundary layer is
affected by SST

» Wind stress divergence correlates with cold
to warm SST, and wind stress convergence
with warm to cold SST, strongest with winds
aligning with SST gradient

21 July — 20 October 1999
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ROUPLED
ANOMALIES

- Relationship between slowly
varying SST anomalies and low-
level (850 mb) atmospheric
vorticity anomalies.

* Examination of CMIP5 model
output and NOAA reanalysis
products show coupled
anomalies driven by atmos in
the midlatitudes and by the
ocean In the tropics.

» Coupled anomalies exist in
Atmospheric reanalyses due to
assimilation of observations

Premise of
attribution:
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SRONG | COURCEDSEENS

USING OBSERVATIONS ACROSS DOMAINS

atm U RMSE (SCDA - WCDA)

« Ocean obs reduce
error In midlatitude
surface winds

"« Generally, observations
in ‘downstream’

,z  dynamics Improve
‘upstream’ state

* Coupled earth system

Ocean
Observations

model Is analyzed as one

system

Atmosphere
Observations

» Atmospheric observations

can be used to update the
Strong couplmg VS, weak couplmg baselme

ocean state, and vice versa

» Strong coupling In DA can
accelerate spinup of
coupled systems

Sluka et al., 2016



s BEENGE DUE 1O DISFARAITE SCALES ANIERRISIS
SWNDITION NUMBER OF FEIESMESEES

* The background error covariance matrix B is ill-conditioned due to the
large range of scales (especially when forming a climatological B)

- Methods are needed to rescale and precondition the matrix, particularly
for variational methods (e.g. as proposed by Smith et al,, 201 7).

covariance matrix B «107°
Da and Chang (UMD),

AOSC 658E Spring 2018

Ocean Atmos

10 20 30 0% s w0 s =

eigenvalue of B

Figure 1: covariance matrix B for the coupled system (left), and its corresponding eigenvalues (right).
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CONTROL THEORY

Controllability
Reachability

Stabilizability

CONCEPTS

the ability to guide the system to a specific state
by changing the system input

the ability to move a system to a point in Its
configuration space within a given time interval

the ability to move a system to the zero vector

Observabllity

Detectabllity

the inrtial state can be determined in finite time using
only observations (and knowledge of the dynamics)

All states that cannot be observed decay to zero
exponentially




EOA 1O [DENTIFY CRITICHESS
OBSERVATIONS

* Models can be used to identify
unstable modes in the
system (e.g. using bred vector,
ensemble or TLM/Adjoint methods)
that must be constrained
by observations to make
accurate forecasts.

 For example, observations will have
maximum impact on the

100

200

analysis at the largest component

300

of the bred vector, or maximum
ensemble spread.

120°E 180°

Trevisan and collaborators

Error

Analysis
[o] [=]

Fig. 3. QG model. RMS analysis error versus time, measured by
total enstrophy and normalized by natural variability. 3-D VAR:
dotted line. Proposed method: continuous line.

Uboldi et al., 2005

Monthly timescales, 5. Zhang, 2018
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INVES TIGATIONS OF DYNAMICAL
SYSTEMS PROPERTIES 5 -

< ) Lyapunov exponents for the dissipation model configurations

0.4 T T |
0c-6x6_atm-6x6
ERlaE yapunoy spectrum : e
> ) 0c-9x9_atm-6x6 - -
indicates the dimension of 2
© -0.4
S
the unstable-neutral subspace e
that must be resolved to o
. ' . * 0 5|0 1|00 1|50 2|00 2|50 3I00 3I50 4IOO
constrain prediction errors ndex ofthe Lyapunov exponent
Closer view of " i F s serme
g LE1 — LES ~ 0.0) appears. Oceanic
* The Lyapunov spectrum is (b) ity (-0.1) e

impacted by changes in

..........

resolution (a) and coupling
strength (b).

)

0.2 0.4 06 0.8 1
Coupling strengthc=cz

Takuma Yoshida (UMD) AOSC 658E Spring 2018

unaffected

(b) There are some values
without positive LE

(c) Before point (a), two neutral
modes coexist

(d) After point(a)andc=cz<
0.5, degenerated weakly
decaying modes (LE3, LE4)
coexist

(e) After point (a), thereis at
least one common neutral
mode (LEZ or LE1 at (b))

* (f) Coupled instability (LE1)

grows gradually by
strengthening coupling



EOUPLING CHANGES T8
LYAPUNOV SPECTRUM

* The Lyapunov Spectrum

can be decomposed
between the

atmospheric and oceanic

systems (emulating
forced atmosphere or
forced ocean scenario)

» Less frequent coupling
(red) Increases
synchronization error

Bach and Sun (UMD),
AOSC 658E Spring 2018
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Figure 3: Relative errors (Left) in oceanic states for A = 0.1,100, 1000, co. LEs of uncoupled oceanic model
with A = 0.1, 100, 1000, co are compared with the slow modes of coupled model (right).



BA REQUIRES HIGHLY ACCURAS
CROSS-DOMAIN MODELING

» With poorly specified cross-domain covariances, the

quality of strongly coupled DA can be degraded compared

to the quality of weakly

BllGiere IS Insufficient rep
varying flows by a (sma

coupled DA (IFan et gl ZCIsy

resentation of statistics of slow-

) finite ensemble

* Early pre-operational developments are focusing on the

atmos/ocean boundary.



POSIMILATION OF MULTIFESS
Al O] EM PORAL SCALES

Decompose analysis at
various timescales: stationary
(ENSQO), low-frequency, and
hish-frequency (e.g. active
tropical air-sea interactions)

» Allows simultaneous
corrections of multiple scales
at once.
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CAPTURING THE

FREQU

il B A

-NCY SIGNALS

Time averaging of observations

(particularly from fast dynamics)

No-cyc

climato

ing DA - background s
OgY

Ensemble drawn from a

climatological simulation of an
atmosphere—ocean coupled
climate model

The accuracy of analyses is evaluated using the coeffi-
cient of efficiency (Nash and Sutcliffe 1970):
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INTERFACE SOLVER FOR
BOUNDARY LAYER PROCESSES

» Navy ESPC
focusing on

assimilation of
boundary layer
observations with
high relevance to
coupled dynamics

Atmosphere

Ocean

.| [ Free atmosphere s

| = Atm. boundary l1ayer

. [ Deep ocean

New interface
solver

Extended
NCODA

Bishop and Barron (2015)
Frolov et al. (2016)
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EOUPLED MODES
REANALYSIS

- Demonstration of a large-scale coupled g 2 Netheatfloes b Integrated temperature increment
. : : : J 4 |
DA effort, with indications of spinup- 2 |
& 0 &
times needed for initialization 2| S

- —— ORA-20C
-8  —— CERA-20C

o CERA—ZOC iS the ECMWF IO—member 719 910 1930 1950 1970 1990 2010 ° 1970 1930 1950 1970 1990 2010

ensemble of COUp|€C| climate reanalyses of Figure 1 Time series of CERA-20C and ORA-20C control member
values of (a) the global average of net air-sea heat fluxes and (b) the

the 20th centu "y, ik@Rat 0 =200 integrated temperature increment over the ocean.

* Improves representation of atmosphere—
ocean heat fluxes and mean sea level
pressure compared to previous reanalyses

Laloyaux et al., 2015; Laloyaux et al., 201 /:
https://www.ecmwf.int/en/newsletter/ | 50/meteorology/cera-20c-earth-system-approach-climate-reanalysis



BT ATING DEFICIEN T PROCESSES
i COUPLED MO EES
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NEURAL NETWORK CLASSIFICATION
OF INTERPOLATION ERRORS
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=S TIMATION OF MODEL
COUPLING PARAMETERS
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CHALLENGES FOR CDA [N
REAL WORLD APPLICATIONS

- The cross-domain modeling must be very accurate for
error covariance information to be used (Han et al,, 2013) -
need to revisit bulk flux parameterizations

- Assimilation of multiple spatiotemporal scales is
difficult, so the initial focus of CDA is on isolating various scales to
focus assimilation strategies.

- Sparse observations and biased models make DA very
difficult - In these cases CDA can point to minimum requirements for
both In order to achieve skillful forecasts.



EFORTUNITIES FORT
U URE

 CDA could be used In coordination with

comprehensive short-term field campaigns to
identify the largest-impact observations
that should be maintained for long-term monitoring/
prediction.

» CDA can help to guide model development by
identifying coupling dynamics in need of
Improved representation.



ECEANOBS T
EOMMUNITY PAFER

- "Observational Needs for improving Ocean and Coupled Reanalysis, S2S
Predictions, and Decadal Prediction’ amalgamating 6 different abstract submissions:

- 38: Ocean observational requirements for skillful near-term climate predictions

- 44: The role of ocean observations in Coupled Data Assimilation for
prediction & reanalysis

« /2: Direct Assimilation of Satellite Radiances for the SST

- 88: Synthesis of Ocean Observations using Data Assimilation: loward a more
WERRIEENRIcilre of the State of the Ocean

- 328: Ocean reanalyses: advances and unsolved challenges

» 3/6: Ocean observations to improve our understanding, modeling and
forecasting of S2S variability



FINAL MESSAGES

» The CDA community is developing new methods and tools

that will be valuable for model development and observing
system validation focusing on the Tropical Pacific

» Challenges exist due to limritations in CDA inputs (..
coupled modeling and observations)

» Greater communication and coordination between observing,
modeling and CDA communities will accelerate advances

Contact: Steve.Penny@noaa.gov




