Can the salt-advection feedback be detected in decadal AMOC variability?

¹Wilbert Weijer, ^{2,3}Wei Cheng, ⁴Who Kim, ⁴Gokhan Danabasoglu, ⁴Steve Yeager, ⁴Peter Gent, ^{2,3}Dongxiao Zhang, ⁵John Chiang, ¹Jiaxu Zhang

¹ Los Alamos National Laboratory
² Univ. of Washington/JISAO, ³ NOAA/Pacific Marine Environmental Laboratory
⁴ National Center for Atmospheric Research
⁵ University of California Berkeley

Office of Science

⁸Can the Salt-Advection Feedback Be Detected in Internal Variability of the Atlantic Meridional Overturning Circulation?

WEI CHENG,^{a,b} WILBERT WEIJER,^c WHO M. KIM,^d GOKHAN DANABASOGLU,^d STEVE G. YEAGER,^d PETER R. GENT,^d DONGXIAO ZHANG,^{a,b} JOHN C. H. CHIANG,^e AND JIAXU ZHANG^c

JOURNAL OF CLIMATE

VOLUME 31

6650

Problem: AMOC May Be Bi-stable

Models suggest AMOC may be bi-stable

- Two stable equilibria may exist
 - One with strong AMOC
 - One with collapsed AMOC
- So AMOC may be prone to collapse if perturbed

Problem: AMOC May Be Bi-stable

Problem: AMOC May Be Bi-stable

Dijkstra & Weijer (2003), Weijer & Dijkstra (2003)

Pressing Question

Where is the current climate state with respect to L₁ and L₂?

Mechanism: Salt Advection Feedback

- North Atlantic (e.g., Stommel 1961)
 - AMOC transports salty subtropical waters northward
 - Preconditions subpolar North Atlantic for deep convection
 - Positive feedback on AMOC strength

Mechanism: Salt Advection Feedback

Full Atlantic (e.g., Rahmstorf 1996)

- AMOC exports NADW from the Atlantic, imports:
 - Salty thermocline water (warm water route)
 - Fresh intermediate water (cold water route)
- AMOC stability depends on net freshwater exchange between South Atlantic and Southern Ocean: F_{ov}
 - If $F_{ov} > 0$, then negative feedback
 - If F_{ov} < 0, then positive feedback</p>

Stability Indicator: Fov

- Studies suggest: L_1 is given by $F_{ov}(34^{\circ}S) = 0$
 - If $F_{ov} > 0$ (negative feedback): AMOC mono-stable
 - If F_{ov} < 0 (then positive feedback): AMOC bi-stable
- Most climate models show F_{ov} > 0
 - Observations suggest $F_{ov} < 0$
 - Do models overestimate AMOC stability?
- Caveat
 - F_{ov} (34°S) is not external forcing but part of the solution
 - Part of balance between E-P-R and gyre-driven freshwater transport across 34°S

Probing AMOC Stability

Equilibrium diagrams

Calculate equilibria directly with iterative methods

Downside

- Technically and computationally challenging
- Very few models capable

Dijkstra & Weijer (2003), Weijer & Dijkstra (2003)

Probing AMOC Stability

Hysteresis diagrams from hosing experiments

- Apply freshwater flux perturbation to North Atlantic
- Gradually increase, then decrease its amplitude

Downside

- No guarantee for true equilibria if perturbation change is not slow enough
- Very expensive

This Study

 Goal: Can we detect salt advection feedback from internal variability?

Objective: examine the key physical links underlying salt-advection feedback in internal variability

This Study

Approach: Analyze PI control integrations of two ESMs

- ESM2M (GFDL): 500 yr
- CESM1 (NSF/DOE): 1400 yr

Perform spectral analysis on key quantities

 $F \downarrow ov = -1/S \downarrow 0 \quad \int -H \uparrow 0 = v \quad S v dx = \int X w \uparrow X e^{-v} dx \quad S(z) = 1/(X w - X e) \quad \int X w \uparrow X e^{-v} dx \quad S(z) = 1/(X w - X e) \quad \int X w \uparrow X e^{-v} dx$

AMOC-induced freshwater transport Zonally integrated meridional transport Zonally averaged salinity

Meridional Coherence of AMOC

What do the spectra of AMOC look like?

Meridional Coherence of AMOC

How coherent is AMOC variability?

+ve phase: Index leads field

AMOC and F_{ov}

AMOC and F_{ov}: CESM

 $F \downarrow ov = -1/S \downarrow 0 \quad \int -H \uparrow 0 = v \uparrow S d v \quad \int -H \uparrow 0 = v \uparrow S d v \quad \int -H \uparrow 0 = v \uparrow S > dz$

+ve phase: Index leads field

F_{ov} and Stratification

Density Difference and AMOC

Coherence phase between AMOC (45°N) and density (saline, thermal contributions) in the subpolar North Atlantic

Conclusions

- Salt advection feedback cannot be detected in natural variability of long PI control integrations
 - AMOC controlled by North Atlantic density
 - Weak impact of AMOC variability on Fov (34°S)
 - But no noticeable impact of Fov (34°S) on stratification, or AMOC
- Natural variations in Fov (34°S) not strong enough to generate significant salinity perturbations in Atlantic