

Pathways and watermass transformation of Atlantic Water entering the Nordic Seas through Denmark Strait

Stefanie Ypma, Nils Brüggemann, Sotiria Georgiou, Paul Spence, Henk Dijkstra, Julie Pietrzak and Caroline Katsman

Circulation Nordic Seas

Connection NIIC - NIJ

Våge et al. 2011, 2015 & Pickart et al. 2017:

1000m

- Similar volume transport ~ 1Sv
- Signal disappears northeast of Iceland
 - Hypothesis: connection via local overturning cell in the Iceland Sea

\rightarrow Can we find this connection in ocean models?

Connection NIIC - NIJ

Which path(s) does the NIIC take?

2) How much of the NIIC contributes to the overflow?

3) Where does the watermass transformation take place?

Investigate connection in two ocean models

Similarities

- Ocean component of often-used fully coupled climate models: CESM (for POP) and GFDL-CM2.6 (for MOM)
- 0.1° horizontal resolution \rightarrow 4.5 km
- 50 (MOM) & 42 (POP) layers in the vertical
 → ~5m at surface to ~200m deeper layers
- Forced by Normal Year Forcing (CORE-II)
 → no air-sea feedbacks
 - \rightarrow no interannual atmospheric variability

Differences

Sea-ice:

MOM: coupled sea-ice model

POP: restoring temperature and salinity under sea-ice from climatology

Thermohaline properties at Denmark Strait

Thermohaline properties at Denmark Strait

Release particles in northward flow west of Iceland 80 Each particle tagged with corresponding transport 75 70 65

- Seed daily for 1 year
- 6 years advection time
- Total # of particles MOM: 226407 POP: 284412

over depth

Particles are advected offline in 3D velocity fields using the Connectivity Modeling System

- Release particles in northward flow west of Iceland over depth
- Each particle tagged with corresponding transport
- Seed daily for 1 year
- 6 years advection time
- Total # of particles MOM: 226407
 POP: 284412
- Particles are advected offline in 3D velocity fields using the Connectivity Modeling System

- Release particles in northward flow west of Iceland over depth
- Each particle tagged with corresponding transport
- Seed daily for 1 year
- 6 years advection time
- Total # of particles MOM: 226407
 POP: 284412
- Particles are advected offline in 3D velocity fields using the Connectivity Modeling System

- Release particles in northward flow west of Iceland over depth
- Each particle tagged with corresponding transport
- Seed daily for 1 year
- 6 years advection time
- Total # of particles MOM: 226407
 POP: 284412
- Particles are advected offline in 3D velocity fields using the Connectivity Modeling System

- Release particles in northward flow west of Iceland over depth
- Each particle tagged with corresponding transport
- Seed daily for 1 year
- 6 years advection time
- Total # of particles MOM: 226407
 POP: 284412
- Particles are advected offline in 3D velocity fields using the Connectivity Modeling System

- Release particles in northward flow west of Iceland over depth
- Each particle tagged with corresponding transport
- Seed daily for 1 year
- 6 years advection time
- Total # of particles MOM: 226407
 POP: 284412
- Particles are advected offline in 3D velocity fields using the Connectivity Modeling System

- Release particles in northward flow west of Iceland over depth
- Each particle tagged with corresponding transport
- Seed daily for 1 year
- 6 years advection time
- Total # of particles MOM: 226407
 POP: 284412
- Particles are advected offline in 3D velocity fields using the Connectivity Modeling System

Lagrangian Particles – separating pathways

Categorize particles based on:

- Through which exit they leave the Nordic Seas
- Which path they take within the Nordic Seas

1) Which path(s) does the NIIC take?

 Transformed NIIC water leaves through Denmark Strait and between Iceland and Shetland Islands

- Transformed NIIC water leaves through Denmark Strait and between Iceland and Shetland Islands
- Main paths along which transformation takes place differ:

- Transformed NIIC water leaves through Denmark Strait and between Iceland and Shetland Islands
- Main paths along which transformation takes place differ:
 - Denmark Strait: Short loop in POP
 - Long path in MOM

- Transformed NIIC water leaves through Denmark Strait and between Iceland and Shetland Islands
- Main paths along which transformation takes place differ:
 - Denmark Strait: Short loop in POP
 Long path in MOM
 - Iceland-Shetland: exit is different

- Transformed NIIC water leaves through Denmark Strait and between Iceland and Shetland Islands
- Main paths along which transformation takes place differ:
 - Denmark Strait: Short loop in POP
 Long path in MOM
 - Iceland-Shetland: exit is different
 - in MOM most of water leaving here has become dense

3) Where does the watermass transformation take place in MOM?

3) Where does the watermass transformation take place in POP

The NIIC separates following various paths

- The NIIC separates following various paths
- Only part of the NIIC contributes to the overflow

- The NIIC separates following various paths
- Only part of the NIIC contributes to the overflow
- Transformation by mixing with other watermasses and direct cooling by the atmosphere

- The NIIC separates following various paths
- Only part of the NIIC contributes to the overflow
- Transformation by mixing with other watermasses
- Watermass transformation pathways different for MOM and POP

 → influence of sea-ice on hydrography and circulation?

Additional Slides

Temperature & salinity @ 50m

March heat flux and maximum mixed layer depth

Barotropic streamfunction

Kogur transect

