2018 International AMOC Science Meeting | US CLIVAR

Decomposing the Variability in the North Atlantic Meridional Overturning Circulation

Sijia Zou and Susan Lozier Duke University July 25, 2018

Motivation – Lack of meridional MOC coherence

• Different MOC variability between the subpolar and the subtropical gyre.

(Lozier et al., 2010)

Motivation – Attribution of lack of meridional MOC coherence

 Meridional coherence is masked by high frequency wind-forced variability.

(Biastoch et al., 2008)

Goals

- To quantify the meridionally coherent component and gyre-specific component of MOC variability.
- To determine the contribution of the two components to total MOC in the subpolar and the subtropical gyre.

Data

- Reanalysis: SODA3.4.2, GFDL MOM5/SIS model base, 1/4°, 1980-2015;
- OGCM: FLAME, 1/12°, 1990-2004;
 ORCA025, 1/4°, 1961-2004.
 HYCOM, 1/12°, 1978-2015

Methods

• MOC calculation in σ_2 space:

$$AMOC(\varphi, t) = \max \Psi(\varphi, \sigma_2, t) = \max \left[\int_{\sigma_2}^{\sigma_2 \ surface} \int_{x_w}^{x_e} v(x, \varphi, \sigma_2, t) dx d\sigma_2 \right].$$

Latitude Time Overturning
Streamfunction

- Calculated with monthly data, and then averaged annually before a trend is removed.
- Empirical Orthogonal Function (EOF) Analysis.

Overturning streamfunction in z/σ space

Decomposing MOC variability with EOF

- EOF1: Meridional coherent mode (model range: 46%-60%);
- EOF2: Gyre-specific mode (model range: 16%-30%).

Decomposing MOC variability with EOF

 Principal Component (PC) for EOF1 contain both interannual and decadal variabilities.

Coherent MOC variability is linked to cumulative NAO

 Coherent MOC is more related to persistent NAO situations, rather than individual events.

Decomposing MOC variability with EOF

 PC for gyre-specific mode (EOF2) varies on interannual time scales.

Gyre-specific MOC variability is linked to wind stress

- Subpolar: stronger westerlies
 weaker MOC
 - Ekman transport
 - Geostrophic transport?
- Subtropics: stronger easterlies → stronger MOC
 - Ekman transport
 - Mid-ocean transport with Rossby wave adjustment (Zhao and Johns, 2014)

Goals

- To quantify the meridional coherent component and gyre-specific component of MOC variability.
- To determine the contribution of the two components to total MOC in the subpolar and the subtropical gyre.

Decomposing MOC variability at 50°N

- EOF1+EOF2: 85-92% of total MOC variance
- EOF1: 66-87%
- EOF2: 5-25%

Decomposing MOC variability at 26°N

- EOF1+EOF2: 72-82%
- EOF1: 12-27%
- EOF2: 55-60%

Decomposing MOC variability at 26°N

- EOF1+EOF2: 52%
- EOF1: 0%
- EOF2: 52%

- EOF1+EOF2: 71%
- EOF1: 42%
- EOF2: 40%

Gyre-gyre boundary as the key region to detect coherent MOC variability

• At 40-43°N, EOF2 = 0.

Gyre-gyre boundary as the key region to detect coherent MOC variability

- EOF1: 70-91% of total
 MOC variance
- EOF2: 0%

Conclusions I

- MOC is decomposed into a meridionally coherent mode and a gyrespecific mode.
- The coherent mode is linked to **persistent NAO**.
- The gyre-specific mode is linked to local wind stress.
- Ongoing study Diagnosing mechanism:
 - How does NAO impact the meridional coherent mode? Heat flux?
 - How does wind stress drive the gyre-specific mode?

Conclusions II

- The **subpolar MOC** (50°N) is dominated by coherent mode (66-87%), with a relatively small contribution from gyre-specific mode (5-25%).
- The **subtropical MOC** (26°N) is dominated by gyre-specific mode (~50%), with an overall significant contribution from coherent mode (27-42%).
- The meridionally coherent mode can be detected at the **gyre-gyre boundary**.
- Ongoing Study– Application on observations:
 - Can we reconstruct subpolar MOC with observations at 41°N and 26°N?