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Feedbacks between the AMOC and the carbon cycle:
a present and future perspective

Peter Brown
National Oceanography Centre, Southampton, UK
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SUMMARY - AMOC-Carbon — a review

* Introduction to the carbon cycle and its drivers
* Current knowledge of how it relates to the overturning circulation

* The carbon cycle into the future
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Beer 1. Getting CO, into water:
Require [atmospheric CO,] > [water CO,]

Joseph Preistley FRS 1733-1804
English theologian, natural philosopher, chemist and political
theorist, discovered dephlogisticated air (oxygen)

In 1767, first to artificially carbonate water by hanging a filled
vessel over a fermentation vat at a brewery in Leeds, UK
(fermentation vats naturally give off CO2 in the process of
converting sugars into low alcohol).

1772:
Illlustration from
Directions for

Followed it up with “Impregnating Water with Fixed Air”, 1772,
chemical carbonation by dripping vitriol (sulfuric acid) into

Impregnating
powdered chalk (calcium carbonate) producing CO, gas, that g’aéif/‘\”,f’;
. . . ix ir by
was then infused into agitated water Joseph
Priestley

Didn’t market the process commercially, but gave the method / ingredients to Captain
James Cook on his 2" Pacific voyage, in hope of its ability to alleviate scurvy.

Method picked up by Jacob Schweppe, who simplified it and did quite well out of it
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Beer 2. Measuring the effect of
CO, in water:

Seren P. L. Sgrensen created the pH scale in 1909
whilst working at the Carlsberg Laboratory in
Copenhagen, Denmark.

Studied the effect of ion concentration on proteins
and enzymes, and because the concentration of
hydrogen ions was particularly important,

Introduced the pH-scale as a simple
way of expressing it, and two new
ways of measuring acidity, based on
electrode potentiometry and
colorimetry, both still used to this
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pH Sensors

Commercially available for measuring seawater pH
down to 0.004 pH units

Electrode

Colorimetr )
y potentiometry

e.g. Sunburst
Submersible
Autonomous Moored
Instrument (SAMI)-pH

e.g. Sea Bird SeaFET
lon Sensitive Field Effect
Transistor pH sensor
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What are the drivers of the ocean CO, sink?

- Heat fluxes — cooling / warming of surface

waters drives CO2 uptake / outgassing through Biological and physical pumps of carbon dioxide

y
3

impact on CO, solubility (AMOC)
COy 00000000000000 COp <0q

- Biological production and the drawdown in % 8 2 S o
carbon concentrations associated with this o N Vv =
- Nutrient supply that sustains biological particulate o Gehed a. Asisies Aeices A
production (AMOC) é i » E . = é .
-3 . . 2 e
- Ocean Circulation . Re ’3

- Transport of recently ventilated waters high in
anthropogenic carbon to depth (AMOC)

- Transport of old waters high in natural /
remineralised carbon and nutrients to the
surface (AMOC)

- Wind regime — speed of air-sea CO, transfer
related to wind strength

Ocean CO, sink currently a delicate balance between
speed at which CO, enters the ocean, & speed at which it
is removed from the surface -> substantial variability
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What are the drivers of the ocean CO, sink? NORTH ATLANTIC

Variability in seasonal ApCO, amplitude, and continuing disagreement
between different methods for constraining the seasonal CO, cycle
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What are the drivers of the ocean CO, sink? SOUTHERN OCEAN

Variability in seasonal ApCO, amplitude, and continuing disagreement Models
between different methods for constraining the seasonal CO, cycle SEASONAL CYCLE IN SEA-AIR CO2 FLUX
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Carbon dioxide fluxes

Pacific Ocean

Substantial
interannual variability
in air-sea CO, fluxes
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Carbon dioxide fluxes linked to ocean overturning

Decadal variability in air-sea CO, fluxes linked to circulation variability, itself possibly linked to
wind

Ocean inversion from observations Hindcast model
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The ‘other’ CO, problem - Ocean acidification
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The ‘other’ CO, problem - Ocean acidification
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AMOC CO, feedbacks: present

* Decadal variability in upper ocean overturning linked to variability in global air-sea CO, fluxes,
predominantly through impacts on natural carbon system

* Regionally the co-variability is not as clear-cut

* In Atlantic, AMOC directly related to regional ocean carbon transport, and capacity of system to
uptake additional CO, from the atmosphere

e Short-term AMOC variability can directly impact biological system through vertical nutrient supply,
and carbon drawdown associated with enhanced export production

* Ocean acidification being propagated into deep waters by AMOC
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AMOC CO, feedbacks: future impacts 594 - fully coupled climate carbon

BGC = Increasing atmospheric pCO,, no radiative effect

CMIPS - global RAD = preindustrial atmospheric CO,, yes radiative effect
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CMIP5 - feedbacks on surface carbon concentrations

Total decrease in surface DIC concentration due to climate change

a) cou- BGC
o
|
S -20}
£ —
= -30! 2
_40{-\ ADIC S SDICY [:]\ »|)|<‘-\ sDICY SDIC J E
MPI IPSL  NorESM HadGEM2 CanESM CESM1 CNRM  Mean =
b) Q
B &)
P B %3 = 5% 56 3 S "
i ]
~ =10}
|
B -20
E
= -30)
_40.
MPI IPSL  NorESM HadGEM2 CanESM CESM1 CNRM  Mean
] ] i ]
Total Temperature Alkalinity Salinity Atmospheric CO,
(solubility)

‘-‘f’ Olesnagrapty Comcre

Schwinger et al (2014)

2500

2400

N
w
o
o

N
n
o
o

N
—_—
o
o

2000

1900

R8T 1y | RO LS I (L e I Trri | SIS LI B O U I )
| | I | [ [

b

4 « Atlantic
s Pacific
Indian

9 umol/kg/°C S --_-_r -

1 I SN B e | I O8I o | | Lo i1 I O P I L 1 1 I L1 l

00 50 100 150 200 250 30.0
o[°C)

Sarmiento & Gruber (2006)

SOENCE OF The
ENVROANMENT

NERC



CMIP5 - feedbacks on deep carbon concentrations >500m
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AMOC CO, feedbacks: future impacts on air-sea CO, fluxes

CMIP5

Historical and projected
air-sea CO, fluxes

Carbon response to higher ocean heat

content, increased stratification (lower
MLDs), Arctic and Antarctic sea ice loss,
slowdown in AMOC

- Increases in CO, uptake by the ocean to
stop by 2070

- Carbon uptake in the North Atlantic
Ocean is predicted to continuously
increase until 2040, remain stable
between ~2040 and 2070, then rapidly
decrease after 2070

Wang et al (2016)
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AMOC CO, feedbacks: nutrients

A Phosphate 1990s

T ——————
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AMOC CO, feedbacks: reduced ventilation leading to deep acidification

An additional consequence of this will be enhanced acidification at depth, as greater organic
decomposition leads to the addition of carbon to deep waters.

AOU Chen et al (2018)
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Sea of Japan — reduced ventilation between 1965 and 2015 has increased AOU throughout the water
column and increased pH. pH at 2500m has decreased 25% quicker than at surface, which has been tracking
atmospheric increase
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AMOC CO, feedbacks: export of acidified waters to depth perez et al (2018)

Cold water coral (CWC) reefs are ”ecosysterp Location & depth of CWCs, coIour:ASH depth (dark = shallow)
engineers” acting as breeding and spawning '
grounds for multiple species of fish, many
economically important

&FN
N

§ Equator
=

3
95% of CWC located above aragonite

saturation horizon, below which their
skeletons would begin to crumble and
dissolve.

North Pacific ASH is shallower than Atlantic

Overturning circulation is transporting
carbonate-depleted waters to depth.
Predicted that in 30 years if business-as- .
usual, Atlantic AZH will shoal by 1000-1400m i W e o

preindustrial = yellow, modern = black, white = atmos CO, @520ppm
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AMOC CO, feedbacks: future impacts on air-sea CO, fluxes
Organic carbon

Refractory Dissolved Organic Carbon (RDOC) is
complex, long-chain organic material that exists in the
ocean for millenia due to its resistance to degradation,
and it is a vast reservoir of carbon (~660 PgC)

Can survive multiple circuits of the Global Overturning
Circulation (GOC), but is eventually converted to
soluble form by microbial / photic processes at the
surface or thermal degradation at hydrothermal vents

Slowdown in AMOC could thus be a negative feedback
on atmospheric CO,, as less refractory DOC is
delivered to these locations

Shen & Benner (2018)
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AMOC CO, feedbacks: future impacts on air-sea CO, fluxes
Organic carbon

Refractory Dissolved Organic Carbon (RDOC) is
complex, long-chain organic material that exists in the
ocean for millenia due to its resistance to degradation,
and it is a vast reservoir of carbon (~660 PgC)

Can survive multiple circuits of the Global Overturning
Circulation (GOC), but is eventually converted to
soluble form by microbial / photic processes at the
surface or thermal degradation at hydrothermal vents

Slowdown in AMOC could thus be a negative feedback
on atmospheric CO,, as less refractory DOC is

delivered to these locations _
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AMOC CO, feedbacks: future impacts summary

AMOC and the carbon cycle are intimately related
Increased ocean heat content will make seawater less

soluble to CO, causing substantial outgassing of natural
carbon

Increased stratification and AMOC slowdown could have
multiple feedbacks:

e Less carbon transported to depth, reducing uptake from
atmosphere as high concentrations remain at surface

* Inorganic nutrient and refractory organic matter trapping
in deep waters as supply to surface / productive regions diminishes, impacting ecosystems
dependent on such production, and leading to Increased acidification at depth

But stable AMOC will enable high anthropogenic carbon / low carbonate ion waters to be exported to
depth, leading to shoaling of aragonite saturation horizon
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