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To What Extent Can the AMOC be Inferred
From Surface Information?
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No study has shown that a reconstruction method
works in a suite of coupled atmosphere-ocean models.
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New Analysis with CMIP5

> Analyze CMIP5 simulations

» Only piControl simulations at least 500 years long

» 5-year running mean SST North Atlantic basin (0-60N).
» AMOC index: maximum streamfunction at 40N

» AMOC index is 5-year running mean

» Only 11 models have 500-year control, AMOC index, and SST.

» MIROCS5 has SST discontinuity, leaving 10 models.
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Variance of AMOC
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Linear Regression

Assume reconstruction model of the form

reconstructed AMOC(t) = w1 X1(t) + woXo(t) + - - - + wy Xum(t)

Least squares: select the weights w to minimize

y - X w
AMOC SST weights




Linear Regression

Assume reconstruction model of the form

reconstructed AMOC(t) = w1 X1(t) + woXo(t) + - - - + wy Xum(t)

Least squares: select the weights w to minimize

y - X w
AMOC SST  weights

Problem: Not enough data.

There are more SST grid points than data.
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Approach: impose constraints on the equation.
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Approach: impose constraints on the equation.

A priori assumption:
AMOC affects the large-scale SST.
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Laplacians
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Normalized Variance Spectrum for N. Atlantic SST
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Constrained Least Squares

Constrained least squares is equivalent to minimizing the function

2

H e + AR(w),

AMOC SST weights

where R(w) is a non-negative “penalty” function of the weights.

LASSO corresponds to R(w) =) . |w;|. It tends to sign zero
weight to high-wavenumbers because they have small variance.

A controls the strength of the penalty:
> large A means most w's are zero: field is smooth

» small A means more w’'s are non-zero: field can be noisy.
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AMOC Prediction

CV-MSE of AMOC Prediction
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AMOC Prediction

CV-MSE of AMOC Prediction
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AMOC Prediction

CV-MSE of AMOC Prediction
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AMOC Prediction
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Cross-Model Predictions

Train on one model, test in another model.
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SST that Co-Varies with AMOC (A = optimal)

||||||||||||||||

MMMMMMMMMMMMMMMMMMMM

'Y
4
-
i
.

i & o]
f ot 3 ¢4
L

20/21



Conclusions

1. We reconstruct the AMOC based on surface observations using a
combination of regularized regression and Laplacian basis functions.

2. Fraction of AMOC that is predictable from Atlantic SST: 10-70%.

3. A reconstruction equation that works well in one climate model can
perform poorly in other climate models.

4. Reconstructions at A = 1 tend to have skill in all models.

5. Reconstructions at A = 0.1 suggest model clusters:

CCSM4, CESM1-BGC, NorESM1-M
MPI models

CanESM2, CNRM-CM5

INMCM4

MRI-CGCM3

vV VY VY VYy

Next step: include time lags and other variables (e.g,. SSS).
Optimal Fingerprinting.
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