Title: A large ensemble testbed to evaluate pCO₂ interpolation methods

Authors:

Luke Gloege¹, Galen A. McKinley¹ Peter Landschützer² Nicole S. Lovenduski⁶ Keith B. Rodgers⁵ Amanda Fay Thomas Frolicher John C. Fyfe⁷ Tatiana Ilyina² Steve D. Jones⁴ Christian Rödenbeck³ Yohei Takano² Sarah Schlunegger⁵

Institutions:

¹Lamont-Doherty Earth Observatory, Palisades, NY

² Max Planck Institute for Meteorology, Hamburg, Germany

³ Max Planck Institute for Biogeochemistry, Jena, Germany

⁴ University of Bergen, Bergen, Norway

⁵ AOS program, Princeton University, Princeton, NJ

⁶ University of Colorado, Boulder, CO

⁷ Environment and Climate Change Canada, Victoria, Canada

Abstract:

Accurately quantifying ocean CO₂ uptake is imperative to reducing uncertainty in the global carbon budget and assessing whether the goals of the UNFCCC Paris agreement are being achieved. Quantifying the CO₂ flux across the air-sea interface requires time-dependent maps of surface ocean pCO₂. Even though there is a paucity of pCO₂ observations within any given month and global coverage is sparse, various techniques have been developed to create monthly maps of surface pCO_2 , either by interpolating pCO_2 observations or using global monthly maps of physical and biogeochemical variables as regressors. Such interpolation techniques are integral, since pCO₂ cannot be directly measured with satellites. However, the carbon cycle community lacks the ability to test the accuracy of these gap-filling methods when the true value is unknown. We bridge this gap by evaluating a leading method within four independent coupled ocean-atmosphere models. Here, we present a testbed using multiple large ensembles from four independent models suitable for such an evaluation. We use this testbed to statistically evaluate how well a neural-network based gap-filling approach is able to reconstruct the spatial pattern of pCO₂ in different climate states. A suite of statistical techniques is used to compare the reconstructed and modeled pCO₂. Preliminary results suggest reconstruction methods perform well in large regions of the global ocean, with high correlations (>~0.9) in the Equatorial Pacific and North Atlantic and low correlations (~ 0.5) in regions of the Southern Ocean.