Interpreting Geostrophic Turbulence from Eddy

1. Goal

Using Deepglider AUVs, we seek an improved
understanding of the vertical structure of time
dependent geostrophic motions, the vertical
partitioning of total mechanical energy, and
the processes by which energy transfers across
scales.

Turbulent energy transfer across spatial scales of 10’s to 100’s of km'’s
where quasi-geostrophic motions dominate, termed geostrophic
turbulence, has been broadly theorized but narrowly observed.

2. Methods

Gliders were deployed at multiple locations to collect near daily
full-depth profiles for many months. Vehicles were piloted to
maintain constant heading for multiple dives-climb cycles allow-
ing the estimation of along-track density gradients at all. We then
calculate the vertical shear of cross-track geostrophic velocity
using thermal wind, and reference this to the glider estimated
depth-average current.
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3. Vertical Structure

Orthonormal vertical modes, G (z) and G’ (z), derived from the qua-
si-geostrophic potential vorticity equation are projected onto ¢ and

U profiles to find n mode amplitudes (3(x,y,t), a(x,y,t) for each profile..
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Vertical Structure and Variability
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After projecting profiles onto vertical modes, depth-averaged PE
and KE is expressed as a function of vertical mode number.
(a scaled vertical wavenumber f/c_and inverse deformation radius )
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5. Geographic Variability .
Additional Deepglider deploymentsat |

36°N and along 26.5°N in the N. Atlantic | Lt
allow geographic variabilty to explored.
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Dashed lines are the Garrett-Munk
(GM79) internal wave spectrum at

2| each location. Station PAPA is least
| energetic with a spectrum similar
the GM prediction.
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6. Conclusions

- There is approximate equipartition between KE and PE in the first
baroclinic mode at all locations. PE dominates at higher modes.

- The partition of energy across mode number varies by geographic
location.

- Stratification distorts mode shapes and alters the transfer of energy
across modes.

- Seasonal changes in energy partitioning across modes appear
linked to changes in stratification.
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Geography of Mesoscale Energy
- In energetic regions near the Gulf Stream (BATS), energy is elevated
above GM predictions. Geostrophic turbulence predictions of the
spectral slope (k) are consistent with observations.

- In less energetic regions (NE Pacific), the potential energy spectrum
is flatter at low modes and less discernable from the GM spectrum.

- As deformation radii change with latitude, the wavenumber range
within which geostrophic turbulence is prevalent widens/narrows.

Importance of Stratification

- Stratitfication controls the vertical stretching of mode shapes at
modes n > 2. This alters the projection of modes onto displacement
and velocity profiles. Enhanced surface stratification shifts maxima
and minima in mode amplitudes towards the surface.

- Stratification relatively inhibits or enhances mode interactions and
the transfer of energy across scales. This results in preferential collec-
tion at certain scales. Triple interaction coefficients show geographic
and seasonal mode interaction variability.
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Seasonality
- In the presence of increased surface stratification, self-interactions
between higher modes (n > 2) are enhanced. This results in relative-
ly more energy at these scales and a flatter spectrum.

- In the absence of increased surface stratification, energy collects in
the first baroclinic where it can barotropize.
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