Eddy and seasonal variability of surface dynamics and fluxes in the Nordic Seas
in a 1/12° global ocean model, forced and coupled to the atmosphere
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We use a coupled simulation performed at the Met Office, with the Global Coupled model version 3 (GC3; Williams et al., .

2017). It includes the 1/12° NEMO ocean model ORCA12, the sea ice model CICE, the MetUM atmosphere at 25 km resolution
and the JULES land model (Hewitt et al., 2016). The coupled simulation is multidecadal. The forced simulation uses the same
ocean-ice model and the CORE forcing (Griffies et al., 2016), for the years 1976 to 1995.

Figure 5 : time-mean ice concentration. White lines: 0.15 and 0.85
contours in the models; red: same contours in NSIDC data, for the
same years ar the forced model. Year numbers for the coupled model
are arbitrary.

Figure 6 : Time series of ice cover in the
Nordic seas (Greenland to 15°W, 64°N to
82°N) for observations and models. Year
numbers for the coupled model are arbitrary.
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the circulation of Atlantic water (red) and
Arctic water (blue) indicated (Isachsen et
al, 2014).

drifters; b) rms velocity from a simulation
with ROMS (from Isachsen et al, 2012,

fig 4).

RMS velocities from the global drifter database (Fig. 3a) are compared with the rms surface velocity in the forced ocean model
(Fig. 3b) and in the coupled run (Fig. 3c). Eddy activity patterns are very similar, although the rms velocity is larger in the coupled
model. Eddy activity is strong in the boundary current but too weak in the interior, consistent with the ROMS and FESOM models

at similar resolution.

Drifter climatology 3.02 Urms(m/s)

80 r

75

70 |

65

60
-40 -30 -20 -10 0 10 20

Figure 3a: rms velocity, drifters
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Figure 4a Observed SST
(Reynolds) averaged over years
1986 to 1994
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Figure 3b: rms velocity, forced
model
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Figure 4b : Difference between the SST

in the forced ocean model (1986 to
1994 average) and Reynolds SST.
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Figure 3c : rms velocity, coupled
model
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Figure 4c : Difference between the
SST in the coupled ocean model
(average over 10 years) and Reynolds
SST.

The Sea Surface Temperature
(SST) in the interior of the
Norwegian sea is too cold in
the models compared with
the observations (Fig. 4). On
the other hand, the tempera-
ture of the Atlantic current
along Svalbard is too high in
the models. This is consistent
with an underestimated late-
ral eddy mixing between the
boundary current and the
interior.

Despite their different atmos-
pheric forcings, the two ocean
simulations behave similarly.

model be due to the ice-ocean flux? Indeed, the maximum heat loss near
Svalbard and the band of heat loss along the path of the East Greenland
current are partly due to melting of ice advected by the ocean currents,
probably mostly coming through Fram strait.

The ocean-atmosphere flux, computed without the ocean-ice flux, is
shown in Fig 7d and 7e. It is still larger than ERA Interim but more
comparable. The forced model loses more heat than the coupled model
even though its SST anomaly is lower than the coupled model (Fig. 4).
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negative out of the ocean (colorscale
saturated at -350 W/m2, and red contours
every 100W/m?). The marginal sea ice zone
is outlined in white (concentration 0.85 and
0.15). a: forced model total ocean heat flux.
b: same for the coupled simulation. c:
averaged surface heat flux from the
reanalysis ERA Interim, with NSIDC ice
concentration. d) and e): same as a) and b)
but for the ocean-atmosphere flux only
(ocean-ice flux removed).

other ocean-only models at 4km resolution.

Conclusions

= The global 1/12° coupled and forced models exhibit the same biases in eddy-kinetic energy in the
Nordic seas. The low eddy kinetic energy in the center of the Norwegian Sea is a bias shared by

= The lack of lateral transport of heat into the interior may be the cause of the excessive
temperature in the West Spitsbergen current, south and west of Svalbard.

= Seaice area is overestimated in the Greenland sea, in the coupled and forced models.

Overall, the quality of the ORCA12 coupled simulation

is remarquable (Hewitt et

al, 2016). Nevertheless,

common biases in forced and coupled simulations
suggest that progress in simulating ocean-topography
interactions, ocean dynamics and sea ice dynamics

could
resolution.

improve future climate scenarios at high

References

e Griffies, S.M., et al, 2016: OMIP contribution to CMIP6: experimental and diagnostic protocol for the
physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev., 9, 3231-3296.

e Hewitt H., et al, 2016: The impact of resolving the Rossby radius at mid-latitudes in the ocean: results
from a high-resolution version of the Met Office GC2 coupled model. Geosci. Model Dev., 9, 3655-3670.
e/sachsen, P. E., I. Koszalka, and J. H. LaCasce (2012), Observed and modeled surface eddy heat fluxes in

the eastern Nordic Seas, J. Geophys. Res., 117, C08020, doi:10.1029/2012JC007935.

e/sachsen, P. E., Sarlie, S. R., Mauritzen, C., Lydersen, C., Dodd, P., and Kovacs, K. M., 2014. Upper-ocean hydrography of

Model. Earth Syst. doi:10.1002/2017MS5001115

the Nordic Seas during the International Polar Year (2007-2008) as observed by instrumented seals and Argo floats.
Deep Sea Research Part |, 93:41-59.

eWekerle, C., Q. Wang, S. Danilov, V. Schourup-Kristensen, W.-J. von Appen, and T. Jung (2017), Atlantic Water in the
Nordic Seas: Locally eddy-permitting ocean simulation in a global setup, J. Geophys. Res. Oceans, 122, 914-940.

e Williams, K. D., et al., 2017: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 & GC3.1) Configurations. J. Adv.




