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— Eastern Amazon thermodynamic scaling is <1 %o0/1,000 km, The South American Monsoon is particularly vulnerable to energetically-driven zonal and
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6180 interpreted as a shift in the focus of
monsoon convection (behind-to-in-front of
Rainout caves; see Cruz et al., 2009) with minimal change
in west 6180 where convection is always
upstream.
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