Using Stable Water Isotope Measurements to **Determine Lake Michigan Evaporation Influence on** Atmospheric Moisture

Alexandra Meyer¹, Lisa Welp^{1,4}, Thilina Jayarathne², Olivia Salmon², Brian Stirm³, Michael Baldwin^{1,4}, Paul Shepson^{1,2} ¹Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, ²Department of Chemistry, Purdue University, ³Department of Aviation and Transportation Technology, Purdue University, ⁴Purdue Climate Change Research Center, Purdue University

Introduction

- The Great Lakes region provides energy and moisture to fuel seasonal convective storms and lake-effect snow (Sharma, et al. 2018).
- Estimates of the Great Lakes influence downwind have been constructed using water isotopes and the Craig Gordon Model (Equation 1), but there is some uncertainty about how large the kinetic fractionation (ε_k) is in this

Results

Table 1. Average parameters for flight days (in parentheses) and ranges for Monte Carlo simulations.

Flight Parameters			
	Flight 2 10/17	Flight 4 10/27	Flight 5 10/29
Time (UTC)	1600 to 1900	1600 to 2000	1800 to 2000
Air Temperature (°C)	6.1-8 (6.68)	9.6-10.9 (10.25)	9-11 (9.84)
H ₂ O Temperature (°C)	(12.20)	(12.41)	(9.53)
RH with respect to air (%)	52-68 (60.29)	63-70 (66.83)	40- 71 (66.4)
RH with respect to lake surface (%)	25-52 (42)	50-65 (58)	40-70 (67.88)
Wind Speed (m/s)	5.9-8.9 (7.63)	3-4 (3.13)	0.70 to 6.2 (3.90)
H ₂ O range (ppm)	4,400 to 5,500	5,500 to 9,000	4,000 to 9,500
δD Atmosphere	-230 to -190 (-225)	-220 to -180 (-200)	-205 to -170 (- 190)
δ ¹⁸ O Atmosphere	-34 to -25 (-30)	-30 to -24 (-29)	-28 to -22 (-26)
Kinetic Fractionation $\epsilon_k \delta D$	2-3.5	5-6 (5.54)	5-6 (5.405)
$\epsilon_k \delta^{18} O$	2.5-4	6-7 (6.28)	6-7 (6.129)
Equilibrium Fractionation $\alpha_{eq} \delta D$	(1.10230) ± 0.001	(1.09734) ± 0.001	(1.09790) ± 0.001
$\alpha_{eq} \delta^{18} O$	(1.01103) ± 0.0001	(1.01068) ± 0.0001	(1.01072)±0.0001
δ _E δD CG	-100.48 ± 16.48	-52.94 ± 20.95	-100.20 ± 13.52
δ _E δD KP intercepts (Adjusted R ²)	-169.1 (0.69)	-36.0 (0.73)	-143.0 (0.86)
δ _E δ ¹⁸ Ο CG	-11.682 ± 3.263	-8.219 ± 3.497	-12.405 ± 3.925
$ δ_E δ^{18}O KP intercepts (Adjusted R2) $	-23.98 (0.80)	-7.0 (0.70)	-28.21 (0.14)
d-excess CG	-7.0 ± 18.1	9.72 ± 25.46	-0.960 ± 21.73
d-excess KP	22.9	22.1	82.7

environment.

- Gat, et al. (1994) found ~5.7-9.5% of the atmospheric water vapor downwind of the lakes is from lake evaporation using ε_{k} = 14.2‰ δ^{18} O and 12.5 ‰ δD (Lake ϵ_k).
- Xiao, et al. (2018) found ~7.4% when using the Lake ε_k and ~16.8% when using the ocean ε_k parameterization ($\varepsilon_k = 6.2\%$) δ¹⁸O and 5.5‰ δD).
- The difference between the two fractionation factors may be partially due to a lake self-influence parameter, based on humidity, turbulence, and where the atmosphere was measured (Xiao, et al. 2018).
- To better constrain downwind Great Lakes influence, aircraft measurements of atmospheric water vapor isotopes around Lake Michigan were made.

Objectives:

Measure the gradient of H_2O_v and isotopic values across upwind to downwind lake influence gradients to test the isotopic predictions of the Craig-Gordon model of evaporation.

Figure 3. (a) Map of flight 2 path Monday, October 17, 2018. Flight occurred from approximately 11am to 3:30pm local time (EDT). (b) Two Vertical Profiles (VP's) indicate change in (b) water vapor change and (c) deuterium isotopes across the lake. (d). The VPs converge in δ^{18} O space above ~500 masl, but diverge nearer to the surface.

Materials and Methods

$$\delta_E = \frac{a_{eq}^{-1}\delta_L - h\delta_A - \varepsilon^* - \varepsilon_k(1-h)}{(1-h) + 10^{-3}(1-h)\varepsilon_k}$$

Equation 1. Craig and Gordon Model (Xiao et al. 2016). This equation was created to explain the isotopic composition of evaporation (δ_E) in oceans. Parameters include equilibrium fractionation (α_{eq}), the isotopic value of the lake and atmosphere (δ_L and δ_A), relative humidity (h), and a kinetic fractionation factor (ε_k). This equation parameterizes ε_k as a factor of wind speed.

Figure 2. (a) Example Keeling Plot for Flight 4.Keeling Plot intercepts are an estimate of δ_E when it is assumed that there are two sources and the upwind value doesn't change significantly over time. and . Ordinary Least Squares regression and data screening based on a height 500 m, wind direction, and CO_2 were used (Pataki et al, 2003).

Flights were completed using the Purdue University Airborne Laboratory for Atmospheric Research (ALAR), a modified Beechcraft Duchess aircraft.

Figure 4. (a) Map of flight 4 path Monday, October 27, 2018. The flight occurred from approximately 12 pm to 5pm local time (EDT). (b) Indicates both horizontal and vertical water vapor gradients. This gradient is also evident in δD space (c) but is more variable in δ_{18} O space (d).

(c)

(b) Flight 4

- Best Air Turbulence (BAT) Probe measures winds and temperatures
- Picarro CO₂ /CH₄/H₂O Cavity Ringdown Spectroscopy analyzer
- Los Gatos Research (LGR) 1 Hz Triple Water Vapor Isotope Off-axis Integrated Cavity Output Spectroscopy analyzer
- Flight plans based on many factors, including weather, safety, and aircraft availability

Figure 5. (a) Map of flight path 5 on Monday, October 29, 2018, which occurred from approximately 12pm to 5pm local time (EDT). (b) Water vapor concentration downwind is increased with increasing fetch, indicating both horizontal and vertical water vapor gradients. (c) A similar pattern is seen in δD space, however again, (d) $\delta_{18}O$ profiles are variable.

Summary and Next Steps

- We see an H₂O vapor and deuterium isotope gradient across the lake with increasing fetch. This pattern is more variable but is also seen at the lowest altitudes of δ_{18} O profiles.
- For Flight 4, our CG predictions match our KP results within the Monte Carlo mear \pm sd. These KP results have a relatively high R² of about 0.7.
- Flight 2 and Flight 5 KP values are more depleted than would be expected based on the CG model. Possible explanations include atmospheric mixing, measurement height CG δ_A uncertainty, and city/"other" wind influence.
- Future work: Applying a smaller-scale wind direction model to screen data for Keeling Plot applications and exploring observations of δ_A , RH, and ϵ_k .

Figure 6. Craig and Gordon Monte Carlo simulations (histograms) are more enriched than a δ_{F} Keeling Plot from observations around Lake Michigan (red dots) would suggest. This is the case in both δD and $\delta^{18}O$ during both Flight 2 (a) and Flight 5(c). Flight 4 (b) Keeling Plot results fall within the range of the Monte Carlo experiment, and are included in the range of the Monte Carlo mean \pm sd.

References

1. Sharma, A. et al. (2018). *Earth's Future* **6**, 1366–1379.

2.Gat, J. R., Bowser, C. J. & Kendall, C. (1994). *Geophysical Research Letters* 21, 557-560.

3. Xiao C, Lofgren BM, Wang J, Chu PY.(2016). J Adv Model Earth Syst 8:1969–1985. 4. Xiao C, et al. (2018). SCIENCE CHINA Earth Sciences.

5. Horita J, Rozanski K, Cohen S. (2008). *Isotopes in Environmental and Health Studies* **44**:23–49.

6. Merlivat L, JouzelJ .(1979). Journal of Geophysical Research 84:5029.

7. Pataki DE, Ehleringer JR, Flanagan LB, et al. (2003). Global Biogeochemical Cycles 17.

8. Flight Path images: NOAA © Google, Landsat/Copernicus

Funding was provided by a PCCRC Seed Grant. Thanks to our pilots.

AM was supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. (DGE-1333468r). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

