

Continuous monitoring of surface water vapor isotopic composition at Neumayer-III station, East Antarctica

Saeid Bagheri Dastgerdi¹ (saeid.bagheri@awi.de), Martin Werner¹, Jean-Louis Bonne¹, Melanie Behrens¹, Maria Hörhold¹, and Gerrit Lohmann¹

¹Alfred Wegener Institute (AWI), Bremerhaven, Germany

Introduction

Understanding the processes influencing the stable water isotopic composition and variability of the atmospheric vapor under different climate conditions is essential for a more accurate interpretation of Antarctic ice core isotopic data as a temperature proxy. This can be achieved by a combination of direct observation and climate modeling simulations of the water vapor isotopic composition of Antarctic precipitation.

Method

- A Cavity Ring-Down Spectroscopy analyzer has been installed in January 2017 at the Neumayer-III station (on the Ekström ice shelf within the Weddell Sea) in Antarctica for high frequency continuous in situ observations of the water vapor isotopic composition.
- Observations have been compared with the simulated isotopic composition of vapor from ECHAM5-wiso, an atmospheric general circulation model (AGCM) equipped with water isotope diagnostics.
- Meteorological data of the Neumayer station is taken from PANGAEA data center.
- Moisture sources have been estimated over our observation period based on air masses dispersion simulations with FLEXPART model.

Fig. 1. Comparison of observations (blue) and simulated data (red) at the Neumayer station in Antarctica (Feb2017 – Feb2019). Downwards: temperature (Metrological & modeled), humidity, δ^{18} O, and d-excess.

Conclusions

We observe, model, and trace water vapor isotopes in Antarctica (at the Neumayer-III station).

- High correlation between $\delta^{18}O$ & temperature
- High agreement between model & observations
 - Compared to observations, ECHAM5-wiso model can reproduce the synoptical and seasonal isotope and temperature variations, reliably.
 - Seasonally different origins of the water vapor
 - The moisture sources of water vapor coming to the Neumayer station are seasonally different.
 - Wind as an important driver
 - $\circ \qquad \mbox{The value of } \delta^{18}\mbox{O and the relation between temperature and } \delta^{18}\mbox{O} \\ \mbox{changes with the change of wind pattern.} \end{cases}$

Results

- δ^{18} O and δ D have a maximum in February and a minimum in July.
- δ^{18} O and δ D are very well correlated with each other (R=0.99) and they show a high correlation with temperature (R=0.86) and humidity (R=0.82).
- The slope of the relation between δ^{18} O and temperature is 0.55 ‰°C⁻¹ (δ^{18} O [‰] =0.55 T [°C] 25.06).
- The ECHAM5-wiso model correctly captures the seasonal and synoptic variability of δ^{18} O and δ D with a high correlation with observations (R=0.75).
- Most of the moisture was transported to the station by cyclonic circulation patterns, with significant seasonal variations (dominant source from the north-west in spring, from the east in fall and from the west in winter).
- 86% of warm events at the Neumayer station coincide with winds from east that bring more humidity from the ocean, form clouds and make δ^{18} O richer. Cold events are associated with winds from south and southwest which bring the cold and dry air from East Antarctic Plateau to the station and make the sky clear. δ^{18} O from the south is more depleted following the temperature.

Fig. 3. Two dimensional frequency distribution of 10m wind (measured every minute) at Neumayer station during one year (2017).

E

Fig. 2. δ^{18} O against temperature (Hourly average) in different seasons marked by colors during one year (Feb 2017-Feb 2018).

Fig. 4. Simulated seasonal moisture transport towards Neumayer-III modelled by FLEXPART

