What controls the meridional distribution of water isotopes?

Nicholas Siler¹, Adriana Bailey², Gerard Roe³, Christo Buizert¹, & David Noone¹ ¹Oregon State University, ²NCAR, ³University of Washington

Background

Single-stream Rayleigh fractionation:

- R_v = Isotope ratio of water vapor
- $R_p =$ Isotope ratio of precipitation
- $R_e =$ Initial isotope ratio (i.e., at point of evaporation)
- f = fraction of initial vapor that has not yet condensed
- $\alpha = Instantaneous$ fractionation factor
- $\overline{\alpha}$ = Path-integrated α

<u>Isotope model</u>

In this framework, isotopes are controlled by 3 variables:

- α = function of temperature at condensation; we parameterize as a function of surface temperature.
- $R_e =$ function of near-surface temperature, relative humidity, & kinetic effects; we use the Craig-Gordon model.
- μ = function of P and F.

If we assume that α and R_{ρ} are both constant, then

the weighted average of all upstream sources: Time/column averages $\overline{R_{v}}(x) = \int_{-1}^{1} R_{v}(x, x^{*})w(x, x^{*})dx^{*}$ $\overline{R_{p}}(x) = \alpha(x)\int_{-1}^{1} R_{v}(x, x^{*})w(x, x^{*})dx^{*}$ Source distribution function $w(x, x^{*}) = \frac{E(x^{*})f(x, x^{*})}{\int_{-1}^{1} E(x^{*})f(x, x^{*})dx^{*}}$ x = sin(lat)

At a given latitude, R_v and R_p can be represented as

 $\delta_p = \left(\frac{R_p(x)}{R_{std}} - 1\right) \times 1000$ $\delta_p(x) \approx -\epsilon \overline{\tau}(x)$ $\epsilon = (\alpha - 1) \times 1000$ i.e., δ of precipitation is proportional to the average $\overline{\tau}(x) = \tau(x, x^*) w(x, x^*) dx^*$ path-integrated attenuation! δ_p^{18} O (DJF) δ_p^{18} O (JJA) δ_n^{18} O (Annual mean) **%** -20 GNIP ----GNIP mean -30 — Full model - - $-10\overline{\tau}$ ($\epsilon = 10$ ‰, as in -40 Bailey et al. 2018) -50 30 60 -60 60 Latitude Latitude Latitude <u>Climate change simulations</u>

E(x) = evaporation $f(x, x^*) = fraction of vapor that originates at x^*$ and is transported to x without precipitating

A simple approximation for $w(x, x^*)$

Consider a radiative transfer analogy:

- Vapor transport (F) is "attenuated" by precipitation (P)
- Attenuation coefficient: $\mu(x) = 2\pi a^2 \frac{P(x)}{|F(x)|}$ • Optical depth: $\tau(x, x^*) = \int_{x^*}^x \mu(\tilde{x}) d\tilde{x}$ • Transmittance: $f(x, x^*) = \exp[-\tau(x, x^*)]$ μ^{-1} can be interpreted as a length scale of vapor transport a = Earth's radius

Vapor transport is set by E - P:

The 1D Moist Static Energy Balance Model (MEBM)

- Down-gradient meridional energy transport
- Hadley Cell parameterization for realistic hydro cycle
- Described in Siler et al. (2018); see also poster by Natalie Burls

Experiment description:

- Impose spatially-uniform radiative feedback of -1 Wm⁻²K⁻¹
- Impose spatially-uniform TOA forcing ranging from -8 to -2 Wm⁻²
- Roughly captures range of global-mean T during Pleistocene

$$F(x) = \int_{-1}^{x} \left[E(x^*) - P(x^*) \right] dx^*.$$

 $\rightarrow w(x, x^*)$ can be approximated from E(x) and P(x) alone.

