Stable water isotopes in paleoclimate simulations – results from the ECHAM5/MPI-OM and MPI-ESM model

Martin Werner, Alexandre Cauqouin, Paul Gierz, Ychen Sun, Gerrit Lohmann

Paleoclimate Dynamics Group, Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Germany

Scientific Goals & Methods

Summary

- The explicit modelling of stable water isotopes (H₂¹⁸O, HD¹⁶O) in complex climate models (GCMs) is one way to improve our understanding of the mechanisms controlling the water isotopes distribution in link with the variations of climate and to evaluate the GCM model performance.
- Here, we present simulation results using two different GCMs with explicit isotope diagnostics, run under pre-industrial (PI), mid-Holocene (6k), last glacial maximum (LGM, 21k), and last interglacial (LIG, 125k) conditions.

Methods

- H₂¹⁸O and HD¹⁶O have been incorporated in all parts of the hydrological cycle of the coupled models ECHAM5/MPI-OM and MPI-ESM.
- Paleoclimate simulations have been performed in accordance with the PMIP3 (for LGM, LIG) and PMIP4-CMIP6 (for 6K) protocols.

ECHAM5/MPI-OM resolution

• atmosphere: horizontal grid size 3.8°x3.8°, 19 vertical levels (T31L19) • ocean: bipolar grid, 3° near the equator, 40 z-levels (GR30L40)

MPI-ESM resolution

• atmosphere: horizontal grid size 1.9°x1.9°, 47 vertical levels (T63L47) • ocean: bipolar grid, 1.5° near the equator, 40 z-levels (GR15L40)

-4.0-2.0-1.0-0.5-0.2-0.1 0.1 0.2 0.5 1.0 2.0 4.0

all plots: Cauquoin et al., CP, 2019

-2

-1

 $\Delta_{LGM-PI} \delta^{18}O_{p}$ in precipitation [‰]

all plots: Werner et al., GMD, 2016

Results & Conclusions

Results

- Simulation results of both isotope-enabled GCMs agree well with modern observations of $\delta^{18}O$ and δD on a global scale.
- Comparison of ice core and speleothem records with simulation results reveals a good model-data agreement in many places for the mid-Holocene (6k), LGM (21k), and last interglacial (LIG, 125k) climate.
- Temporal isotope-temperature relationships are spatially variable for all three investigated periods, and in many locations the temporal gradients

are lower than the modern spatial ones.

Conclusions

- For the LGM, δ^{18} O changes in precipitation are dominated by the glacial cooling, but the temporal δ^{18} O-T gradient is substantially lower than the present-day spatial one for most mid- to high-latitudinal regions.
- For the 6K and LIG climate, simulated temperature changes are small in many regions, and temperature-independent processes dominate past $\delta^{18}O$ and δD changes in precipitation.

References

- Cauquoin, A., Werner, M. and Lohmann, G.: Water isotopes climate relationships for the mid-Holocene and pre-industrial period simulated with
- an isotope-enabled version of MPI-ESM, Clim. Past, 1-38, doi:10.5194/cp-2019-72, in review, 2019.
- Gierz, P., Werner, M. and Lohmann, G.: Simulating climate and stable water isotopes during the Last Interglacial using a coupled climate-isotope model, J. Adv. Model. Earth Syst., 9(8), 624, doi:10.1002/2017MS001056, 2017.
- Werner, M., Haese, B., Xu, X., Zhang, X., Butzin, M. and Lohmann, G.: Glacial-interglacial changes in H218O, HDO and deuterium excess results from the fully coupled ECHAM5/MPI-OM Earth system model, Geosci. Model Dev., 9(2), 647–670, doi:10.5194/gmd-9-647-2016, 2016.

