The ITCZ seesaw response to hemispherically asymmetric thermal forcing
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* Previously, the ITCZ location has been linked to atmospheric cross-equatorial energy 100
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transport, with greater southward energy transport corresponding to a northward I'TCZ shift. ‘
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* Simulation period: 100-200 years. . o . .
. E . desion: O : f heat fl no/cooli dded in th h Fig.2 (A) Zonal mean precipitation as a function of latitude. (B) Fig. 3 Mean precipitation field and precipitation seasonal cycle under strong perturbation forcings.
xperiment design: Opposite surface heat fluxes (warming/cooling) are added in the northern Latitudinal position and (C) precipitation intensity of the ITCZ and (A, B) Annual-mean precipitation fields and (C, D) the seasonal cycle of zonal mean Pacific
and southern subtropical Pacific to mimic hemispherically asymmetric thermal forcing. SPCZ response. Zonal average is takgn over.the P_aCﬁ_C chan between precipitation (color) in two perturbation experiments with strong forcing. Panels (A) and (B) are for
[I00E-80W]. Note the large changes in precipitation intensity while the NEP+60/SEP-15 run where the double ITCZ is eliminated by the imposed forcing while panels
(A) SST (degC) NH+30 SH-10 (B) MSF (10°kg/s) NH-+39 SH-10 only a modest meridional migration of the ITCZ and SPCZ. (C) and (D) are for the NP-30/SP+10 run where the SPCZ and ITCZ swap their roles
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Fig.1 Example of changes in mean climate in one of the perturbation experiments. (A) SST and (C) precipitation changes : % | ] [ SPCZ N-S prec (mm/day)
in response to heat flux anomalies added in the marked boxes, and corresponding changes in (B) atmospheric mass stream 0.9 - o | | o Z Control 4 o085 0eCO2 Aot CO2 Y
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function and (D) oceanic volume stream function. In this particular example, 30 W/m? and -10 W/m? are added to the T 4.0 T g ’ g P °
north and south box, respectively. 40 -20 00 20 40 30 20 -1.0 00 1.0 20 : . .y : : : ..
N-S prec (mm/day) N-S prec (mm/day) Fig. 5 Changes in the ITCZ and SPCZ characteristics across different climate simulations in the CMIP5
Results Fig. 4 (A) Atmospheric energy transport across the equator versus dataset. (A) The latitudinal position of the ITCZ versus the SPCZ and (B) the north-south gradient in near
maximum northward mass transport across the equator; (B) Oceanic surface temperature versus the north-south gradient in precipitation. Precipitation and temperature indices
* Even with strong surface heat fluxes forcing, both the ITCZ and SPCZ locations barely energy transport versus maximum northward volume transport across are calculated for the region of [100E, 80W; 15S, 15N] and the last 50 years of each simulation.
o . o . the equator; (C) Atmospheric energy transport across the equator versus
change (their shifts are smaller than the model horizontal resolution). S ,
. i ) . o precipitation asymmetry; (D) Surface temperature asymmetry versus
* ITCZ and SPCZ locations are defined by the climatological precipitation centroid in the northern precipitation asymmetry.

tropical Pacific ([0-20°N, 100°W-280°W]) and the southern tropical Pacific ([0-20°S,
100°W-280°W1]), respectively. ITCZ and SPCZ strengths are defined as the climatological area-
weighted precipitation in the northern and southern tropical Pacific, respectively.

* FEarlier studies defining the ITCZ location as a broader tropical precipitation centroid (within
20°S-20°N) aliased strength changes into location changes.

Conclusion

* Interhemispheric climate forcing in the tropical Pacific at timescales much longer than interannual does not induce significant ITCZ
shifts, largely due to the compensating effect of ocean heat transport.

* However, relatively small changes in atmospheric heat transport still result in significant changes in cross-equatorial mass transport,
modulating precipitation intensity between the northern and southern tropical Pacific.
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