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1. Introduction 5. Suppressed Conditions Mechanisms

 The boreal summer intraseasonal oscillation (BSISO) is a 30-90 day mode of
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tropical convection that generally initiates in the Indian Ocean and propagates NE g o o H
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 Topography has important impacts on the diurnal cycle (DC) of precipitation (e.g.
elevated heating; Houze 2012)
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Science Questions:

propagation restricted (Figs. 7, 8) i

1. How does topography affect the DC over Luzon and surrounding seas?
2. How does (1) differ across BSISO active vs. suppressed conditions? « Vertical motions are stronger, sooner ; E ; 12 ,. Egg
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Figure 2: Model domain and topography used
in the true topography experiment. Dashed line
indicates northern Luzon.

September, and October, respectively.

a) Elevated Topography Figure 8: Same as Fig. 7, except the doubled topography run
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Schematic (Fig. 9) depicts effect
of topography on the DC during

3. Model Fidelity

a) IMERG longitude-time precipitation  b) RAMS True Topo. longitude-time precipitation
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Figure 3: a) Time-longitude diagrams of precipitation averaged over the model domain < > 28 P _ 20m/s > 12LT 20m/s > 15LT
latitudes for IMERG and b) the RAMS true topography simulation. c) Time-latitude > == " -

22
20
18 ==
16
14 E s

diagrams of precipitation averaged over the model domain longitudes for IMERG and d)
the RAMS true topography simulation. The dashed black lines in (a) and (b) indicate the
approximate locations of northern Luzon’s east and west coasts.
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* During suppressed conditions, topography runs have a larger, earlier DC peak due
to deeper, stronger sea- and valley-to-mountain breezes earlier in the day from
mechanical uplift and elevated heating, respectively

Suppressed conditions: Topography
focuses rainfall over mountains (Fig. 5) .

Q;Dgg& . * During active conditions, mechanical uplift in topography runs sustains

precipitation at a high intensity longer leading to a delay in the DC peak relative to
suppressed conditions
Future work will examine how the DC changes due to ocean coupling
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