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Motivations Highlights

Important results:

* The long-term responses of equatorial Pacific sea surface temperature (SST)
pattern to anthropogenic forcing has long been studied, but little is known about

how much CO, effect contributes to these changes during a short time period. * An initial cooling pattern is found in Equatorial Pacific during fast response period.

«  Abrupt 4xCO, experiment is used to emphasize the effect of CO, during a * Strengthening in most of the equatorial atmospheric circulation in the first 2 years.

global warming process. This effect happens within the first few years, and the Model and experiment setupl'l
internal variability poses a big challenge in assessing the significance of CO, * A very large initial ensemble abrupt 4xCO, experiment of CESM| is used in order
forced changes. to eliminate internal variability.

* The role of air-sea coupling during a short time period after imposing CO, needs
to be better understood.

Goal * Pre-industrial Control: 0-160 years

Define fast and slow responses Explore the development of this fast cooling pattern and it’s *  4xCO, ensemble members branch off

evolution into an enhanced equatorial warming pattern. from different years as indicated

Fast responses: below:

Compare the equatorial atmospheric circulation between fast and
slow responses periods

* First 2 years of fully coupled abrupt 4xCO,
simulation is chosen because equatorial
shows a rapid change in this period

|20 ensemble
members

100 years

* Including both direct CO, forcing (important within the first month) rapid

land-sea contrast and air-sea coupling Abrupt 4xCO,

experiments

121 years

Slow responses:
* Last 30 years of the simulation (89-119 years in this research)
* The earth system reaches equilibrium in this time period
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Define Fast and Slow Responses Time Periods

Fast responses:

* First 2 years of fully coupled abrupt 4xCO,
simulation

* Including both direct CO, forcing (important within
the first month) and air-sea coupling

Slow responses:

e Last 30 years of the simulation 589-I |9 years in this

research)
Highlights

Model and experiment setup:

* A very large initial ensemble abrupt 4xCO,

Tech
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N ST Naeeg = =, ~.Model'and experiment setup: ‘
o S == \%\' fjff?}A'&_eiy%I‘aﬁginitial ensemble abrupt 4xCO,

b

experigent of CESMI is used, in order to eliminate
wriability['].

Important results:
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Mixed layer heat budget time series
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Slow responses
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