Fast and Slow Responses of Equatorial SST Pattern to CO₂ Forcing

Kezhou Lu (kezhou.lu@eas.gatech.edu) and Jie He

Motivations
- The long-term responses of equatorial Pacific sea surface temperature (SST) pattern to anthropogenic forcing has long been studied, but little is known about how much CO₂ effect contributes to these changes during a short time period.
- Abrupt 4xCO₂ experiment is used to emphasize the effect of CO₂ during a global warming process.
- This effect happens within the first few years, and the internal variability poses a big challenge in assessing the significance of CO₂ forced changes.
- The role of air-sea coupling during a short time period after imposing CO₂ needs to be better understood.

Define fast and slow responses

Fast responses
- First 2 years of fully coupled abrupt 4xCO₂ simulation is chosen because equatorial shows a rapid change in this period.
- Including both direct CO₂ forcing (important within the first month) and rapid land-sea contrast and air-sea coupling.

Slow responses
- Last 30 years of the simulation (89-119 years in this research).
- The earth system reaches equilibrium in this time period.

Fast responses

Changes of surface temperature in the first 2 years normalized by global mean temperature changes (shadings) and equatorial surface wind anomalies (vectors) between 4xCO₂ and pre-industrial control simulation. Stippling indicate regions which are dominated by internal variability, based on Monte-Carlo simulation of the surface temperature (5).

Left column: Changes of precipitation between 4xCO₂ and industrial control simulation. Stippling indicates regions which are dominated by internal variability and pre-industrial control wind anomalies (vectors) averaged over 30 years of fully coupled large ensemble mean, and the bottom row shows results averaged over 30 years of slow (5659).

Time evolution of surface (horizontal) and subsurface (vertical, averaged from 79° to 2°N) temperature differences (shadings) and surface ocean current at 5m depth (vectors).

Important results:*
- An initial *cooling pattern* is found in Equatorial Pacific during *fast response* period.
- Strengthening in most of the equatorial atmospheric circulation in the first 2 years.
- Model and experiment setup (5).
- A very large initial ensemble abrupt 4xCO₂ experiment of CESM1 is used in order to eliminate internal variability.

Goal
- Explore the development of this fast cooling pattern and its evolution into an enhanced equatorial warming pattern.
- Compare the equatorial atmospheric circulation between fast and slow responses periods.

Summary
- Wind anomalies triggered by land-sea contrast together with ocean dynamics develop the fast cooling pattern.
- The weakening of anomalous easterlies and smoothing of vertical temperature gradient turn fast cooling to slow warming pattern.

Pre-industrial Control

120 ensemble members

100 years

2 years

121 years

0… 30… 60… 150…

References

Fast and Slow Responses of Equatorial SST Pattern to CO$_2$ Forcing

Kezhou Lu (kezhou.lu@eas.gatech.edu) and Jie He

Define Fast and Slow Responses Time Periods

- **Fast responses:**
 - First 2 years of fully coupled abrupt 4xCO$_2$ simulation
 - Including both direct CO$_2$ forcing (important within the first month) and air-sea coupling

- **Slow responses:**
 - Last 30 years of the simulation (89-119 years in this research)

Model and experiment setup:

- A very large initial ensemble abrupt 4xCO$_2$ experiment of CESM1 is used, in order to eliminate internal variability.

Important results:

- A “La Niña-Like” initial cooling pattern is found in Equatorial Pacific during fast response period.
- Strengthening of Equatorial atmospheric circulation in the first 2 years.

Goal

Explore the development of this “La Niña-Like” fast cooling pattern and it’s evolution into an “El Niño-Like” slow warming pattern.

Fast Responses

- Changes of surface temperature normalized by global mean temperature changes (shadings) and equatorial SST denoted as “El Niño-Like” (regions boxed in red)
- Changes of vertical ocean temperature gradient (vertical) and thermodynamic temperature anomalies (horizontal and dynamical components)

Slow Responses

- Anomalous easterlies become almost zero
- Downwelling oceanic Kelvin wave transports warm water from west to east
- The magnitude of vertical ocean temperature gradient keeps decreasing
- Forms “El Niño-Like” warming pattern

Summary

- Wind anomalies triggered by land-sea contract together with ocean dynamics develop the fast cooling pattern.
- The weakening of anomalous easterlies and smoothing of vertical temperature gradient turn fast cooling to slow warming pattern.

References: