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Abstract

This study investigates the impact of salinity stratification on the upper-ocean response to a category-5 TC, Phailin, that crossed the northern Bay of Bengal (BOB)
from October 08-13, 2013. A drastic increase of up to 5.0 PSU in sea surface salinity (SSS) was observed after Phailin's passage, whereas a weak drop of below
0.5°C was observed in sea surface temperature (SST). Rightward biases were apparent in surface current and SSS but not evident in SST. Phailin-induced SST
variations can be divided into the warming and cooling stages, corresponding to the existence of the thick barrier layer (BL) and temperature inversion before
and erosion after Phailin's passage, respectively. During the warming stage, SST increased due to strong entrainment of warmer water from the BL, which
overcame the cooling induced by surface heat fluxes and horizontal advection. During the cooling stage, the entrainment and upwelling dominated the SST
decrease. The pre-existence of the BL, which reduced entrainment cooling by ~1.09 °C d-1, significantly weakened the overall Phailin-induced SST cooling. The
HYbrid Coordinate Ocean Model (HYCOM) experiments confirm the crucial roles of entrainment and upwelling in the Phailin-induced dramatic SSS increase and
weak SST decrease. Analyses of upper-ocean stratification associated with 16 super TCs that occurred in the BOB during 1980-2015 show that intensifications of
13 TCs were associated with a thick isothermal layer, and 5 out of the 13 were associated with a thick BL. The calculation of TC intensity with and without
considering subsurface temperature demonstrates the importance of large upper-ocean heat storage in TC growth.
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stratification, TC-induced SST cooling is around 2~6 °C, while over the
northern Bay with stronger upper-ocean stratification due to low surface
salinity, the SST decrease is below 1.5 °C. Using OGCM simulations, it has -
been suggested that in the BOB during the post-monsoon season, the salinity
stratification accounts for 40% of the cooling reduction (Neetu et al. 2012).
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the BL and ML, on TC induced SST cooling, iIs still lacking and the associated 0 Fig5. Distribution of BLT (m; left panels) derived from HYCOM

15°N reanalysis (shading) and AVISO SLA (m; contours) for (a) 7 October

processes require in-depth investigation over the BOB.

before Phailin's passage, (d) 12 October after Phailin's passage, and
(g) their difference, (d) minus (a). The middle column plots (b), (e)
2 and (h), and the right column plots (c), (f) and (i) are the same as

S =O0000
N oonid

i ") those on the left column but for MLD and ILD, respectively.
3 1
é z 359.’ZPSU \/Salmlty ) Temperature c
Data and methods o A
3 335 %
®* DATA. Time-series observations from the RAMA buoy located at 15° N, 90° E, s Ll , 2
. . . -200  -100 0 100 200 -200  -100 0 100 200
together with TS profiles from the three Argo floats are used to examine the Distance (km) Distance (k) 2
evolution of atmospheric conditions and ocean response during Phailin. To Fig4. Aquarius (shading) and HYCOM reanalysis (contours) y
] . . SSS averaged for the periods: (a) before Phailin (1-7 October), 305
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gridded products of ocean surface currents, sea surface height (SSH), SST, ehown in’ (¢} versus distance. (e)-(h) are the same a5 (@)(d)
SSS, ocean surface wind, surface heat flux, and precipitation. The 5-day respectively, but for SST anomalies (SSTA) from daily OISST.
resolution SODA 3.3.1 ocean reanalysis data are used to examine the barrier o e

layer thickness (BLT), isothermal layer depth (ILD), and SST near the tracks
of 16 super TCs for the period of 1980-2015.

Methods. The effects of the BL, with a pre-existing temperature inversion
between the ML and BL, on Phailin-induced surface cooling are quantitatively
assessed, using field observations and a diagnostic ML temperature
equation together with a hierarchy of experiments using the HYbrid
Coordinate Ocean Model (HYCOM).
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Fig6. Argo profiles of salinity (a) and temperature (b) from 4
Oct to 16 Oct observed by float 2901335. (c) Amplitude of
the temperature inversion (red line); SST tendency (blue
line); and distances (dark line) from Argo profiles to the TC
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