

Diurnal Cycle of Convection and Air-Sea-Land Interaction Associated with MJO over the Maritime Continent

Ajda Savarin and Shuyi S. Chen Department of Atmospheric Sciences, University of Washington, Seattle, WA

Motivation

- Madden-Julian Oscillation (MJO) convection initiates primarily over the Indian Ocean and propagates eastward to the Pacific over the Maritime Continent (MC).
- The Maritime Continent acts as a barrier to the MJO: 50-60% of MJOs do not cross the MC, and ones that do get weakened in the process. (Fig. 1)
- Large-scale precipitation tracking (LPT) can be used to track MJO events in time and space using

MJO Density - TRMM 3B42 12 mm

Results

MJO Tracking and the DC of Precipitation

accumulated precipitation. (Fig. 3)

Fig. 1: Density of MJO events identified by LPT tracking in 20 years of TRMM-GPM 3B42 data.

Objectives

- Understanding the barrier effect of the MC on the MJO.
- Characterizing the interaction of the MJO with the diurnal cycle (DC) of precipitation over the MC.

Methodology

Unified Wave Interface -Coupled Model (UWIN-CM)

- Weather Research and Forecasting model (WRF v3.6.1)
- Initial and lateral BCs: ECMWF analysis
- YSU PBL, WSM5 microphysics, Tiedtke cumulus param. in 36-, 12-km grids HYbrid Coordinate Ocean Model (HYCOM v2.2.98)
- 0.08° resolution, 32 vertical levels
- Initial and lateral BCs: HYCOM analysis

Data: TRMM 3B42 precipitation(0.25°,

3-hourly), CCMP surface winds (0.25°, 6-hourly), ERA5 (31-km, hourly).

FLAT

MC terrain leveled to 10 m.

- Fig. 5: LPT MJO tracks (left) and rainfall DC (right) in the CTRL (top), FLAT (middle), and WATER (bottom) experiments.
- UWIN-CM reproduces the phase of the precipitation DC and its pattern of variability, but strongly exaggerates the amount of land precipitation.
- The MJO in CTRL and FLAT experiments dissipates over the western MC, while the MJO in the WATER experiment does not weaken and propagates farther east.

Across-Shore Surface Flow and 2m Temperature

Fig. 6: 15-day DC composites of onshore surface wind (left) and 2 m temperature (right) anomalies with distance from coastline. Shown from top to bottom are: CCMP observations, ERA5 reanalysis, and CTRL, FLAT, and WATER experiments.

Model Experiments

15 day simulations starting on November 22, 2011.

CTRL real land-sea distribution and topography

MJO Identification

Large-scale precipitation tracking (LPT) tracks features that:

 accumulate precipitation over 3 days using a spatial filter & 15 mm threshold. move eastward and persist for 7+ days.

Fig. 3: LPT track of the observed MJO event starting on November 22, 2011. Contours outline the area of 3-daily 15 mm rain accumulation, colors represent time.

SST evolves with surrounding landuse is 100% rainforest seas **DC Analysis** 1.2 - TRMM

WATER

MC land replaced with water,

Fig. 2: UWIN-CM model domains and

terrain height in model experiments.

Fig. 4: Distance from coastline over the MC (top), and the 15-day composite of DC of precipitation in TRMM 3B42 (bottom).

-0.5 OCEAN -100100 CTRL 1.0 0.5 OCEAN LAND FLAT 0.5 OCEAN -100100 200 — 12 LST ---- 00 LST —— 06 LST — 18 LST — 15 LST —— 03 LST —— 09 LST — 21 LST WATER

Summary

- Land-locked DC of convection is disruptive to the MJO and its eastward propagation (i.e. the MC barrier effect), with mountains affecting local organization of convection, but play a minor role overall.
- The strong on-shore flow in the morning (9 AM) and rainfall peak around noon over land in UWIN-CM and ERA-5 are absent in CCMP and TRMM data.
- Increase in 2-m temperature over land at 9 AM seems to contribute to unrealistically strong on-shore winds and enhanced morning rainfall in UWIN-CM and ERA5.

Acknowledgements

This research was supported by grants from NOAA CVP - Maritime Content (NA15OAR4320063) and the NASA Earth and Space Science Fellowship. We thank Brandon W Kerns for providing the TRMM-GPM LPT tracking data. **Reference:** Kerns, B. W. and S. S. Chen, 2016: Large-scale precipitation tracking and the MJO over the Maritime Continent and Indo-Pacific warm pool. JGR Atmos., 121, 8755-8776.

- Observed surface flow follows the land-sea breeze pattern: onshore flow in the afternoon, and offshore flow at night. ERA5 - RAIN
- In ERA5 and model experiments, the land-sea wind shift is present, but the strongest winds are colocated with strongest temperature gradients (at the coastline), and highest precipitation totals.

Future Work

Analysis of changes in the DC of winds, temperature, moisture in MJO and non-MJO conditions using global analysis fields, satellite observations, and coupled model experiments.