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Introduction

Climate science has recently and rapidly become data-rich [1],
due to a combination of

• New satellites and ground-based sensors collecting and storing
massive amounts of high-resolution climate and ecosystem data

• Increased computational power to generate and archive
physics-based climate model simulations

Advances in statistics and machine learning have only recently
been applied to the Earth sciences, due to

• Lack of labeled training data

• Small sample sizes and high-dimensional settings

• Strong spatiotemporal dependencies among features

Seasonal Forecasting

Goal: Predict winter precipitation across the southwestern US
using summer sea-surface temperatures over the Pacific

Linear model: For year i and climate division r

• ŷ (i)r = X (i)
1 �̂1 + · · · + X (i)

p �̂p
• y (i)r : winter precipitation

• X (i)
j : sea-surface temperatures at (location, time) j

• y 2 Rn, X 2 Rn⇥p, p � n

Graph Total Variation

GTV: Estimate sparse coe�cients so that the higher the
correlation of Xj and Xk (�jk) the more similar �̂j and �̂k [2].

�̂ = arg min
�

ky � X�k22 Data fit

+ �TV

X

j ,k2E
�j ,k|�j � �k| Graph total variation

+ �1 k�k1 Lasso
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Covariance Graph

Assume X (i) ⇠ N(0,⌃), X 2 Rn⇥p. Define graph G = (V ,E ,W )

• V = {X1, . . .Xp}, Wjk = �jk
• (j , k) 2 E () |⌃j ,k| > 0

• p � n =) sample covariance not consistent estimator for ⌃

Large Ensemble Climate Simulations

www.climate.gov

CESM Large Ensemble Project (LENS)

• 40-member ensemble of physics-based climate
simulations, each subject to perturbed initial
conditions

• Combining observations and simulations shows
potential for improving performance of ML
methods in climate science

• LENS simulations are leveraged to estimate ⌃,
the covariance matrix of X . The simulated
SSTs are interpolated onto the same spatial
grid as SST observations and stacked to form
a matrix XL 2 R40n⇥p. Let ⌃̂L be the sample
covariance of XL. ⌃̂L is used to form the
covariance graph for the GTV estimator.

MultiGTV

Responses from m di↵erent regions across the southwestern US.
We assume that

• The subset of relevant features is preserved across regions

• Coe�cients in each region are aligned with the covariance graph

MultiGTV: Extend GTV to multi-task setting
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Group sparsity

Y = [y1, y2, . . . , ym] B =
h
�(1), �(2), . . . , �(m)

i

Experiments

Data: Precipitation and sea-surface temperatures from
1940-2014 (y 2 R75, X 2 R75⇥904)

• Precipitation over 16 climate divisions across California,
Nevada, Utah, and Arizona, aggregated over November-March

• Sea-surface temperatures aggregated over 10� ⇥ 10� regions
across the Pacific in July, August, September, and October

• Models trained on the first 50 years of data and errors reported
on the held out last 25 years of data

Predictive performance

Model selection

• Markers indicate location and relative magnitude of selected coe�cients in

October for di↵erent methods

• The area-weighted average precipitation across all SWUS regions is used as

the response for Lasso, Fused Lasso, and GTV, and for MultiGTV we

aggregate estimates across regions
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