

Multi-decadal fCO₂ trends in Western Boundary Current- and Eastern Boundary Current-Dominated Margins

Hongjie Wang, Xinping Hu

Department of Physical & Environmental Sciences, Texas A & M University-Corpus Christi, USA

Introduction

Results and Discussion-Boundary Currents

Determination of the rate of change of sea surface CO_2 fugacity (fCO_2) is important, as the fCO_2 gradient between the atmosphere and the ocean determines the direction of CO₂ flux. While substantial efforts have been dedicated to studying oceanic fCO_2 trends, little is known about how fCO_2 varies in ocean margins.

Recent studies suggest that warming rates in the Western Boundary Current-influenced area (WBCs) are higher than the global mean. At the same time, global warming can strengthen coastal upwelling in Eastern Boundary Current-influenced areas (EBCs). The enhanced upwelling should decrease sea surface temperature and alter primary productivity by bringing up more cold, nutrient-rich water to the surface. Based on the empirical relationship between temperature and fCO_2 , different temperature change regimes in WBCs and EBCs could affect fCO₂ differently [*Takahashi et al.*, 2002], while the change of primary productivity could further change surface ocean fCO_2 . However, the net effect of global warming on fCO_2 variation and CO₂ sink/source capacity in WBCs and EBCs is still unclear.

Methods

Data

fCO₂, sea surface salinity (SSS), sea surface temperature (SST), sampling coordinates and date were obtained from the SOCAT Version 5 Coastal databases.

Monthly dry air CO₂ (xCO₂, ppm) data were downloaded from NOAA's Earth System Research Laboratory, and monthly air fCO₂ was calculated based on averaged SSS, SST, and atmospheric pressure in each of the $1^{\circ} \times 1^{\circ}$ grid.

Trend calculations

Generalized Additive Mixed Modeling (GAMM) was used to analyze the fCO₂ trend (Wang et al, 2016). fCO_2 = Seasonal term + environmental covariates term + trend term + errors

Cyclic penalized splines were used to fit seasonal cycle. A second order polynomial model was used to fit non-linearity in the relationship between fCO₂ and SSS, SST, and their interactions. Sampling date was included as a linear effect, and its coefficient represents the fCO_2 rate change not accounted for by seasonal and environmental factors. Models included **an** explicit autoregressive term of lag 1 (AR(1)) to account for the lack of independence of consecutive observations taken close together in time.

Thermal and non-thermal trend calculation

 $T - fCO_2 = \overline{fCO_2} \times [0.0423(SST - \overline{SST})]; NT - fCO_2 = fCO_2 \times [0.0423(\overline{SST} - SST)]$

CO₂ sink/source categorization

Condition	Category
fCO ₂ sea <fco<sub>2air fCO₂sea trend<fco<sub>2air trend</fco<sub></fco<sub>	Increasing Carbon Sink
fCO_2 sea trend> fCO_2 air trend	Decreasing Carbon Sink
fCO ₂ sea>fCO ₂ air fCO ₂ sea trend <fco<sub>2air trend</fco<sub>	Decreasing Carbon Source
fCO_2 sea trend> fCO_2 air trend	Increasing Carbon Source

Results and Discussion-Global Ocean Margins

The averaged fCO_2 trend in

- The fCO₂ trends were higher than atmospheric trends in upwelling areas (California Current System, the Kuroshio/Oyashio transition zone, Gulf stream/Labrador transition zone);
- These upwelling areas have become increasing carbon source or decreasing carbon sink;
- The trends T_{fCO_2} (or NT_{fCO_2}) were higher (or lower) in Gulf Stream than California Currents (WBCs vs. EBCs, Wang et al, 2017).

Summary

The direct warming effect contributes more to T_{fCO_2} increase in the WBCs, while intensified upwelling contributes more to NT- fCO_2 increase in upwelling area (EBCs and current transition zones).

WBCs

Upwelling area

Upwelling of CO₂-enriched

Upwelling of low temperature

subsurface water

subsurface water

Reference

Wang et al, 2016, Mar. Chem. 183, 41-49. Wang et al 2017 Geophys Res Lett 44 doi: 10 1002/2017GL 074724

Eutrophication caused increasing Non-thermal *f*CO₂ trend primary productivity High warming rate Thermal fCO_2 trend

Acknowledgements

This study was funded by the startup fund to X.H. from the College of Science and Engineering and VP Office of Research, Texas A&M University-Corpus Christi. X.H. also acknowledges the support from the Gulf of Mexico Research Initiative (RFP-II, GoMRI-020). The Surface Ocean CO₂ Atlas (SOCAT) is an international effort. Many researchers and funding agencies that have supported data collection and quality control are thanked for their contributions to SOCAT.