
Methods
• We use tide gauge data from Sewells Point (1928-2016) and consider four 

possible covariates of  storm surge behavior:  
(1) time3, (2) global mean temperature3,4,5, (3) global mean sea level6,7, 
and (4) winter mean North Atlantic Oscillation (NAO) index2,8.

• For each candidate covariate (!(t)), we fit a statistical model in which a 
Poisson process (PP) governs the arrival of  events whose sea level 
exceeds the 99th percentile of  detrended daily mean sea levels, and these 
exceedances follow a generalized Pareto distribution (GPD).

• Potential nonstationarity in model parameters ("∈{$, %, &}) following 
Grinsted et al.3:

Parameters: $ : Poisson rate λ ( = λ* + λ,!(()
% : GPD scale (width) % ( = exp[%* + %,! ( ]
& : GPD shape (tail) & ( = &* + &,!(()

• For each candidate covariate, in addition to the fully nonstationary 
model above (NS3), we consider a stationary model (ST) and two other 
potentially nonstationary models:

ST : $, = %, = &, = 0,    NS1 : %, = &, = 0,    NS2 : &, = 0

• We estimate parameter posterior distributions using Markov chain Monte 
Carlo, and compute Bayesian model averaging weights for each model 
(Mk), given the tide gauge data (x):
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• We integrate return level estimates in year yi (RL(yi)) across model 
structures using the BMA weights p(Mk|x):
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Introduction
• Storm surge is a key driver of  uncertainty in future coastal hazards1

• We consider two key deep uncertainties in future storm surge hazard:
• Model choice for storm surge2

• Potential nonstationarity in storm surge frequency and intensity
• So we ask:

1. What are projections of  future storm surge hazard? 
2. What are the impacts on these projections from deep uncertainty in 

storm surge model choice and nonstationarity?
• We use Norfolk, VA as a case study and demonstrate the use of  

Bayesian model averaging (BMA) as a tool to characterize the deep 
uncertainty surrounding model structural choice and nonstationarity.

Results
• Key result #1: For any given covariate structure, about half  the 

model weight is associated with nonstationary statistical models.

• Key result #2: Bayesian model averaging successfully combines flood 
hazard projections, across uncertain model structures.

• The additional information (covariates of  storm surge 
nonstationarity) raise the upper tail of  projected flood hazard.

In a final experiment, we combine using BMA a stationary model with all 
four candidate covariates’ three nonstationary models (total of  13 model 
structures).

• Key result #3: Accounting for nonstationarity and uncertain model 
structure increases the estimated 100-year return level by up to 23 cm, 
while still giving the most model 
weight to the stationary model.

Discussion
• Bayesian model averaging (BMA) is a useful tool to combine model 

predictions when there is disagreement over which model to use.

• We used BMA to address uncertainty in which covariate (if  any!) to use, and 
uncertainty in which (non)stationarity structure to use.

• The degree to which we believe the nonstationary models/different 
covariates is informed by the data.

• Provides guidance on how best to incorporate nonstationary processes into 
flood hazard estimates, and a framework to integrate other locally important 
climate variables, to better inform coastal risk management practices.

Covariate / Model ST NS1
($ varying)

NS2
($, % varying)

NS3
($, %, & varying)

Time 0.52 0.25 0.17 0.06
Temperature 0.55 0.24 0.15 0.06
Sea level 0.55 0.24 0.16 0.06
NOA index 0.55 0.24 0.16 0.05
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