
Energizing Turbulence Closures In Ocean Models

L. Porta Mana, J. Anstey, T. Bolton, T. David, J. Kjellsson,   

S. Bachman, A. Adcroft 

Laure Zanna  

(Oxford)



Outline

§ Motivation: energy cycle & parametrizations  

§ Recent Avenues for Mesoscale Eddy Parameterizations & Energy 

Sources/Sinks with a focus on 

§ Mesoscale to large-scale interactions & a new PV-based/

momentum parameterization based on non-newtonian flow tensor

§ Summary & Possible Avenues for 2019+

§ A new momentum parameterization based on non-newtonian 

flow tensor



Energy Cycle, Reservoirs & Scales 

Microscale,  
Dissipation 
1mm-1cm

Wind + Buoyancy 
Work

Energy Source

Basin + 
Planetary Scale  
1000-10000km

Mesoscale 
10km-100km

Sub-mesoscale, 
filaments …  

<10km

Energy Sink

Energy Transfer

e.g., Wunsch & Ferrari 2008; Scott 2009; 
Stammer et al, 2018

Large 
Scales

Small 
Scales

ANRV365-FL41-14 ARI 12 November 2008 15:9

Forward cascade

Inverse cascade Inverse cascade

Forward cascade

Frontal collapseGeostrophic
turbulence

APE -> EKE

Surface
dissipation

Bottom
dissipation

Baroclinic modes

Barotropic mode

Rd

Figure 6
Schematic of the energy pathways in geostrophic turbulence. The horizontal axis represents the horizontal
wave number, and the vertical variation is decomposed into the barotropic mode (lower line) and the sum of
all baroclinic modes (upper line). Large-scale forcing maintains the available potential energy (APE),
therefore providing energy to the baroclinic mode at very large scales. At these large scales, baroclinic energy
is transferred to smaller horizontal scales. At horizontal scales comparable to the Rossby deformation radius,
energy is transferred to the barotropic mode and then to larger barotropic scales. Some fraction of the
baroclinic energy leaks to smaller scales through surface-intensified baroclinic modes. EKE, eddy kinetic
energy.

eventually to the barotropic one (Charney 1971). For a fluid with strong surface-intensified strat-
ification (such as the ocean), the baroclinic modes interact inefficiently with the barotropic mode,
and thus energy from higher baroclinic modes collects in the first mode and converges toward
the first deformation radius before it finally barotropizes (Flierl 1978, Fu & Flierl 1980, Smith &
Vallis 2001). The inverse cascade is the final stage whereby energy in the barotropic mode near
the deformation scale moves toward even larger scales. Scott & Arbic (2007) recently showed
that the inverse cascade is not confined to the barotropic mode—in numerical simulations, KE
associated with the first baroclinic mode also fluxes upscale. In summary, the KE in the mesoscale
field moves upscale in deep barotropic and first baroclinic eddies. Numerical simulations suggest
that the ratio of energy in the two modes is quite sensitive to the strength of bottom dissipation
(Arbic et al. 2007). This paradigm does not apply at the ocean surface, at which energy appears to
cascade downscale in surface-trapped modes (Klein et al. 2008).

The presence of a vertical shear due to the large-scale geostrophic currents supports surface-
trapped modes in addition to free interior modes. These surface modes tend to extract energy from
the interior ones and transfer energy to small horizontal scales at which they become unstable to
3D instabilities and dissipate their energy (Capet et al. 2008a,b; Klein et al. 2008). It is unknown
whether the surface modes transfer a substantial amount of KE out of the interior geostrophic
eddy field.

Observations broadly support the geostrophic turbulence scenario. Analysis of velocity mea-
surements from mooring data confirms that most of the subinertial EKE resides in equal parts in
the barotropic and first baroclinic modes with very little residual in higher ones (Wunsch 1997).
Sea-surface height measurements reveal a source of EKE at scales near or larger than the first
deformation radius (Scott & Wang 2005). Most of this energy source is likely associated with
the development of baroclinic eddies at the expense of the large-scale currents, but some fraction
could arise from the nonlinear conversion of energy from high baroclinic modes into the first
mode. Scott & Wang (2005) estimated the direction of the energy fluxes from a spectral analysis
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APE as EA = 0.5(b0)2/N2 [40], we find more APE in ORCA0083 than ORCA025 and ORCA1 in
the Kuroshio as well as the other regions marked in Figure 2. Hence, even though the surface
buoyancy forcing is the same in the three simulations, there is more APE that may be converted to KE
in ORCA0083.

Figure 2. Time-averaged (1979–2009) kinetic energy at the surface in ORCA1, ORCA025,
and ORCA0083. Overall, the currents are more diffuse at lower resolution. Note that the colour
scale is nonlinear.

(a) (b)
Figure 3. Area-averaged profiles of mean kinetic energy (a) and stratification (b), measured by the
Brunt–Väisälä frequency, N2, in the Kuroshio region for ORCA1 (blue), ORCA025 (red), and ORCA0083
(green). Dashed lines show values in November and solid lines show March. Separation, zsep, between
the “upper” and “bottom” ocean is indicated by the dashed line. Note that the horizontal axis in the
right plot is broken to show two different scales.
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The Parameterization/Closure Problem

§ Including unresolved processes at low computational cost

 = fast/small-scale (eddy) fluctuations  

< grid-box size

   = slow- /large-scale fluctuations 
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The Parameterization/Closure Problem

§ Including unresolved processes at low computational cost

American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by
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where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
0.1 m; from Niiler et al. 2003) in
the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions
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noise in y is Gaussian, then the probability density of hx̂i is also Gaussian with mean x̂

and covariance Sx̂.

Let’s go back to state estimate in the real world

Main Aim: Combine understanding of atmospheric and oceanic physics with obser-

vations to estimate the state of the system as accurately as possible + make predictions

In atmospheric remote sounding , the measurement operator K is determined by

radiative transfer; additional constraints can be used such as knowledge of optical depth

in a given range of wavenumbers

In the ocean, dynamics is often used to estimate the state. Scales of motions in the

ocean are typically much smaller than the atmosphere and observations are much sparser.

The problem of estimating the flow in the oceans interior is likely to be underdetermined,

the matrix K has more columns than rows.

The ocean circulation is governed by

• Newtons laws (Navier-Stokes equation)

@u

@t
+ (u ·r)u = gẑ� 1

⇢
rp� 2⌦⇥ u+ ⌫r2u+ Fext (1.14)

where v is the 3D velocity and Fext is the external wind forcing.

• Newtons laws (Navier-Stokes equation)

@v

@t
+ (v ·r)v = gẑ� 1

⇢
rp� 2⌦⇥ v + ⌫r2v + Fext (1.15)

where v is the 3D velocity and Fext is the external wind forcing.

• Thermodynamics laws - heat and salt for a stratified fluid (tracer equations),

@C

@t
+ v ·rC = r · rC +mC (1.16)
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case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).
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gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
0.1 m; from Niiler et al. 2003) in
the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions
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from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
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Turbulence 
closure

 = fast/small-scale (eddy) fluctuations  

< grid-box size

   = slow- /large-scale fluctuations 
> grid-box size

( )
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§ E.g., momentum (the same applies to buoyancy equation)



Buoyancy Closure / Gent-McWilliams (1990)
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4.2. Spectral Fluxes in the Upper Ocean

We are interested in the impact of horizontal resolution on the KE balance of oceanic flows and
will therefore focus on the KE in four regions of high eddy activity and one region with low eddy
activity. The five regions are marked in Figure 2: the ACC in the Pacific sector, the Malvinas region in
the South Atlantic, the Kuroshio extension, the Gulf Stream extension and, for comparison, a region
in the East Pacific where eddy activity is low. The ACC region is the same as studied by [10], which
allows for a comparison with their results. We will use only the upper ocean, defined in Section 3,
and investigate the Fourier transformed KE budget defined in Equation (6).

We calculate the spectral KE density, E(K), from Equation (5) for all regions (Figure 5). We find
that the eddy-resolving ORCA0083 simulation has more KE than the other two simulations at all
wavenumbers. We also find that the energy-containing scale is shifted from ⇠320 km to ⇠280 km from
ORCA025 to ORCA0083 in the Kuroshio, and observe similar shifts for the other regions. However,
if the energy-containing scale is defined by the peak in E , as in [15,46], then we find no change in the
energy-containing scale between ORCA025 and ORCA0083. The non-eddying ORCA1 run has at least
an order of magnitude less KE than the other two simulations, which is true whether the eddy-induced
velocities from the GM scheme are added to the Eulerian velocities or not. We also find that ORCA025
and ORCA0083 have a clear peak near the 300 km scale, while ORCA1 has no peak. Hence, the
KE spectra in ORCA025 and ORCA0083 peak near their respective energy-containing scales. As we
will show later in this section, KE fluxes converge to the energy-containing scale of ⇠200–300 km in
all regions of eddy activity studied here. The KE spectra (Figure 5) are somewhat steeper than the
E ⇠ k�3 slope predicted in the 2D turbulence inertial range when stirring and dissipation are isolated
to large and smaller scales respectively. The slope is steeper for ORCA025 than ORCA0083. As we
will show later, the spectral fluxes due to wind forcing and PE to KE conversion occur over a range of
wavenumbers, and thus there is no clear inertial range where a k�3 slope could be expected.

Figure 5. Kinetic energy spectrum, EK , as a function of wavenumber, for ORCA1 (blue), ORCA025
(red), and ORCA0083 (green). Vertical lines show energy-containing scale, KC. Black vertical line
shows first baroclinic Rossby radius, LR, in ORCA0083, although it is nearly identical in all simulations.
Numbers show the result of a fit to determine p for E ⇠ kp between the energy-containing scale and
the highest wavenumber.

Kjellsson & Zanna, 2017
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APE as EA = 0.5(b0)2/N2 [40], we find more APE in ORCA0083 than ORCA025 and ORCA1 in
the Kuroshio as well as the other regions marked in Figure 2. Hence, even though the surface
buoyancy forcing is the same in the three simulations, there is more APE that may be converted to KE
in ORCA0083.

Figure 2. Time-averaged (1979–2009) kinetic energy at the surface in ORCA1, ORCA025,
and ORCA0083. Overall, the currents are more diffuse at lower resolution. Note that the colour
scale is nonlinear.

(a) (b)
Figure 3. Area-averaged profiles of mean kinetic energy (a) and stratification (b), measured by the
Brunt–Väisälä frequency, N2, in the Kuroshio region for ORCA1 (blue), ORCA025 (red), and ORCA0083
(green). Dashed lines show values in November and solid lines show March. Separation, zsep, between
the “upper” and “bottom” ocean is indicated by the dashed line. Note that the horizontal axis in the
right plot is broken to show two different scales.
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Figure 6. Spectral flux for nonlinear interactions, PN , and pressure gradient, PP, (Equation (1)) for
ORCA1 (blue), ORCA025 (red), and ORCA0083 (green). In the left figure, advection, PN, is solid, and
pressure gradient, PP, is dashed. In the right figure, wind forcing, PW, is solid, viscosity, PV, is dotted,
and bottom friction. Note the different vertical scale for the East Pacific region. Note also that spectral
fluxes have units [m · s�3] since they are the integrals of spectral transfers, which have units of kinetic
energy (KE) tendency, [m2 · s�3].

~8km

~30km

~100km

§ Reduced transfer of energy towards the large scale (solid lines) (Kraichnan 

67, Leith 68, Charney 71) at lower resolution

Fluids 2017, 2, 45 8 of 23

APE as EA = 0.5(b0)2/N2 [40], we find more APE in ORCA0083 than ORCA025 and ORCA1 in
the Kuroshio as well as the other regions marked in Figure 2. Hence, even though the surface
buoyancy forcing is the same in the three simulations, there is more APE that may be converted to KE
in ORCA0083.

Figure 2. Time-averaged (1979–2009) kinetic energy at the surface in ORCA1, ORCA025,
and ORCA0083. Overall, the currents are more diffuse at lower resolution. Note that the colour
scale is nonlinear.

(a) (b)
Figure 3. Area-averaged profiles of mean kinetic energy (a) and stratification (b), measured by the
Brunt–Väisälä frequency, N2, in the Kuroshio region for ORCA1 (blue), ORCA025 (red), and ORCA0083
(green). Dashed lines show values in November and solid lines show March. Separation, zsep, between
the “upper” and “bottom” ocean is indicated by the dashed line. Note that the horizontal axis in the
right plot is broken to show two different scales.

Kjellsson & Zanna, 2017

§ Reduced conversion of APE to KE (dashed lines) at low resolution
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vertical wavenumbers. It is then assumed that the dis-
sipation of waves acts nearly symmetric with respect to
upward- and downward-propagating waves and that the
effect of wave–wave interaction is to damp asymmetries
in upward- and downward-propagating waves with
a time scale ty on the order of days.
The dissipation of internal wave energy, that is, the

flux into the highest vertical wavenumbers, where in-
ternal gravity waves are assumed to break, is parame-
terized using a quadratic dependency on total wave
energy, following an early suggestion by Olbers (1976)
(McComas and Müller 1981). This form is supported by
Henyey et al. (1986) and is also usually used (in slightly
modified form) for estimates of internal wave energy
dissipation (Gregg 1989; Polzin et al. 1995; Sun and
Kunze 1999). The mean vertical group velocity c0 of the
upward- or downward-propagating waves is calculated
assuming a prescribed spectrum of internal gravity
waves, that is, a ‘‘GM spectrum’’ in a form specified by
Munk (1981). For time scales longer than ty, the total
energy of internal waves Eiw is governed by

›tEiw5›zc0ty›zc0Eiw1$h ! y0th$hy0Eiw2!iw , (3)

with the parameterization by McComas and Müller
(1981) !iw 5mfE2

iw/c
2
w, with the parameter m5O(1), and

with cw related to the bandwidth of the GM spectrum in
wavenumber space. The term y0 denotes the mean
horizontal group velocity of internal waves analogous to
c0. The vertical symmetrization of internal waves by
wave–wave interaction on the time scale ty leads to
a vertical diffusion of total wave energy Eiw. The hori-
zontal anisotropy of the internal wave fields is shown in
Olbers and Eden (2013) to be equivalent to zero order to
horizontal diffusion of Eiw in Eq. (3), where th is a time
scale on the order of days representing the horizontal
symmetrization of the wave field. More details on the
derivation of the closure for internal wave energy and
dissipation can be found in Olbers and Eden (2013). The
model for internal waves can be extended with com-
partments of the low vertical mode near-inertial waves
and internal tides as shown in Eden andOlbers (2014) to
account for the different lateral propagation character-
istics of the low modes, but this extension is not used
here. We use an identical parameter as in Olbers and
Eden (2013) in the closure Eq. (3).
The forcing of internal waves in the form of energy

fluxes enters Eq. (3) as a flux at the surface and bottom
via the vertical boundary condition of the flux diver-
gences in Eq. (3) (we use zero fluxes at lateral bound-
aries). At the surface, this energy flux is thought to be
given by wind-generated near-inertial waves radiating
down from the surface mixed layer, but other forcing

components are also possible (e.g., Olbers andHerterich
1979). Here, we use an estimate of the near-inertial wave
flux by Rimac et al. (2013) and no other surface flux.
At the bottom, the interaction between the barotropic
tides with topographic obstacles generates a flux into
the internal wave field. Here, we use an estimate of
this flux by Jayne (2009), which was also used in Olbers
and Eden (2013). Another source at the bottom could
be related to the generation of lee waves by either the
mean flow or mesoscale eddies, which was shown by
Nikurashin and Ferrari (2011) to be as important as the
tidal forcing. To account for this effect, we add the dis-
sipated mesoscale eddy energy as a local forcing to
Eq. (3) either at the bottom or the interior, as discussed
in the next section.

c. Mesoscale eddies

A third form of dynamics that is often unresolved in
oceanmodels are mesoscale eddies. Analogous to small-
scale turbulence and internal waves, it is useful to de-
scribe this kind of turbulent flow also with an energy
equation:

r0
dEeke

dt
52$ ! (fluxes)1S2gr0w02r0!eke , (4)

where Eeke 5 (u 02 1 y02)/2 denotes the kinetic energy of
mesoscale eddy fluctuations [eddy kinetic energy
(EKE)], and u0 and r0 denote deviations by mesoscale
eddy fluctuations relative to mean velocity u and density
r. Since the hydrostatic approximation was applied to
derive Eq. (4), the contribution by w02 is absent in the
kinetic energy. A detailed derivation and discussion of
Eq. (4) is provided by many textbooks, for example,
Olbers et al. (2012). Besides a flux divergence, three
exchange terms show up in Eq. (4): exchange with the
mean kinetic S52r0u0u0 ! $hu that is given by the eddy
momentum flux acting on the lateral shear of the mean
flow, exchange with potential energy given by 2gr0w0,
and the dissipation of EKE given by !eke.
In the context of geophysical fluids, Eq. (4) is often

discussed in terms of the so-called Lorenz energy cycle
(Lorenz 1955). In this approach, it is convenient to dif-
ferentiate between available and unavailable potential
energy, since for the former the approximate form
P5 g2r2/(2r20N

2
0) can be given, where N2

0(z) denotes
a stability frequency related to a reference density,
usually taken as the horizontally averaged density, and
r denotes a perturbation from that reference density
(Lorenz 1955). Note that an exact definition for avail-
able potential energy for the ocean in the presence of
compressibility and a nonlinear equation of state was
given by Tailleux (2013). For use in parameterizations,
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vertical wavenumbers. It is then assumed that the dis-
sipation of waves acts nearly symmetric with respect to
upward- and downward-propagating waves and that the
effect of wave–wave interaction is to damp asymmetries
in upward- and downward-propagating waves with
a time scale ty on the order of days.
The dissipation of internal wave energy, that is, the

flux into the highest vertical wavenumbers, where in-
ternal gravity waves are assumed to break, is parame-
terized using a quadratic dependency on total wave
energy, following an early suggestion by Olbers (1976)
(McComas and Müller 1981). This form is supported by
Henyey et al. (1986) and is also usually used (in slightly
modified form) for estimates of internal wave energy
dissipation (Gregg 1989; Polzin et al. 1995; Sun and
Kunze 1999). The mean vertical group velocity c0 of the
upward- or downward-propagating waves is calculated
assuming a prescribed spectrum of internal gravity
waves, that is, a ‘‘GM spectrum’’ in a form specified by
Munk (1981). For time scales longer than ty, the total
energy of internal waves Eiw is governed by

›tEiw5›zc0ty›zc0Eiw1$h ! y0th$hy0Eiw2!iw , (3)

with the parameterization by McComas and Müller
(1981) !iw 5mfE2

iw/c
2
w, with the parameter m5O(1), and

with cw related to the bandwidth of the GM spectrum in
wavenumber space. The term y0 denotes the mean
horizontal group velocity of internal waves analogous to
c0. The vertical symmetrization of internal waves by
wave–wave interaction on the time scale ty leads to
a vertical diffusion of total wave energy Eiw. The hori-
zontal anisotropy of the internal wave fields is shown in
Olbers and Eden (2013) to be equivalent to zero order to
horizontal diffusion of Eiw in Eq. (3), where th is a time
scale on the order of days representing the horizontal
symmetrization of the wave field. More details on the
derivation of the closure for internal wave energy and
dissipation can be found in Olbers and Eden (2013). The
model for internal waves can be extended with com-
partments of the low vertical mode near-inertial waves
and internal tides as shown in Eden andOlbers (2014) to
account for the different lateral propagation character-
istics of the low modes, but this extension is not used
here. We use an identical parameter as in Olbers and
Eden (2013) in the closure Eq. (3).
The forcing of internal waves in the form of energy

fluxes enters Eq. (3) as a flux at the surface and bottom
via the vertical boundary condition of the flux diver-
gences in Eq. (3) (we use zero fluxes at lateral bound-
aries). At the surface, this energy flux is thought to be
given by wind-generated near-inertial waves radiating
down from the surface mixed layer, but other forcing

components are also possible (e.g., Olbers andHerterich
1979). Here, we use an estimate of the near-inertial wave
flux by Rimac et al. (2013) and no other surface flux.
At the bottom, the interaction between the barotropic
tides with topographic obstacles generates a flux into
the internal wave field. Here, we use an estimate of
this flux by Jayne (2009), which was also used in Olbers
and Eden (2013). Another source at the bottom could
be related to the generation of lee waves by either the
mean flow or mesoscale eddies, which was shown by
Nikurashin and Ferrari (2011) to be as important as the
tidal forcing. To account for this effect, we add the dis-
sipated mesoscale eddy energy as a local forcing to
Eq. (3) either at the bottom or the interior, as discussed
in the next section.

c. Mesoscale eddies

A third form of dynamics that is often unresolved in
oceanmodels are mesoscale eddies. Analogous to small-
scale turbulence and internal waves, it is useful to de-
scribe this kind of turbulent flow also with an energy
equation:

r0
dEeke

dt
52$ ! (fluxes)1S2gr0w02r0!eke , (4)

where Eeke 5 (u 02 1 y02)/2 denotes the kinetic energy of
mesoscale eddy fluctuations [eddy kinetic energy
(EKE)], and u0 and r0 denote deviations by mesoscale
eddy fluctuations relative to mean velocity u and density
r. Since the hydrostatic approximation was applied to
derive Eq. (4), the contribution by w02 is absent in the
kinetic energy. A detailed derivation and discussion of
Eq. (4) is provided by many textbooks, for example,
Olbers et al. (2012). Besides a flux divergence, three
exchange terms show up in Eq. (4): exchange with the
mean kinetic S52r0u0u0 ! $hu that is given by the eddy
momentum flux acting on the lateral shear of the mean
flow, exchange with potential energy given by 2gr0w0,
and the dissipation of EKE given by !eke.
In the context of geophysical fluids, Eq. (4) is often

discussed in terms of the so-called Lorenz energy cycle
(Lorenz 1955). In this approach, it is convenient to dif-
ferentiate between available and unavailable potential
energy, since for the former the approximate form
P5 g2r2/(2r20N

2
0) can be given, where N2

0(z) denotes
a stability frequency related to a reference density,
usually taken as the horizontally averaged density, and
r denotes a perturbation from that reference density
(Lorenz 1955). Note that an exact definition for avail-
able potential energy for the ocean in the presence of
compressibility and a nonlinear equation of state was
given by Tailleux (2013). For use in parameterizations,
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vertical wavenumbers. It is then assumed that the dis-
sipation of waves acts nearly symmetric with respect to
upward- and downward-propagating waves and that the
effect of wave–wave interaction is to damp asymmetries
in upward- and downward-propagating waves with
a time scale ty on the order of days.
The dissipation of internal wave energy, that is, the

flux into the highest vertical wavenumbers, where in-
ternal gravity waves are assumed to break, is parame-
terized using a quadratic dependency on total wave
energy, following an early suggestion by Olbers (1976)
(McComas and Müller 1981). This form is supported by
Henyey et al. (1986) and is also usually used (in slightly
modified form) for estimates of internal wave energy
dissipation (Gregg 1989; Polzin et al. 1995; Sun and
Kunze 1999). The mean vertical group velocity c0 of the
upward- or downward-propagating waves is calculated
assuming a prescribed spectrum of internal gravity
waves, that is, a ‘‘GM spectrum’’ in a form specified by
Munk (1981). For time scales longer than ty, the total
energy of internal waves Eiw is governed by

›tEiw5›zc0ty›zc0Eiw1$h ! y0th$hy0Eiw2!iw , (3)

with the parameterization by McComas and Müller
(1981) !iw 5mfE2

iw/c
2
w, with the parameter m5O(1), and

with cw related to the bandwidth of the GM spectrum in
wavenumber space. The term y0 denotes the mean
horizontal group velocity of internal waves analogous to
c0. The vertical symmetrization of internal waves by
wave–wave interaction on the time scale ty leads to
a vertical diffusion of total wave energy Eiw. The hori-
zontal anisotropy of the internal wave fields is shown in
Olbers and Eden (2013) to be equivalent to zero order to
horizontal diffusion of Eiw in Eq. (3), where th is a time
scale on the order of days representing the horizontal
symmetrization of the wave field. More details on the
derivation of the closure for internal wave energy and
dissipation can be found in Olbers and Eden (2013). The
model for internal waves can be extended with com-
partments of the low vertical mode near-inertial waves
and internal tides as shown in Eden andOlbers (2014) to
account for the different lateral propagation character-
istics of the low modes, but this extension is not used
here. We use an identical parameter as in Olbers and
Eden (2013) in the closure Eq. (3).
The forcing of internal waves in the form of energy

fluxes enters Eq. (3) as a flux at the surface and bottom
via the vertical boundary condition of the flux diver-
gences in Eq. (3) (we use zero fluxes at lateral bound-
aries). At the surface, this energy flux is thought to be
given by wind-generated near-inertial waves radiating
down from the surface mixed layer, but other forcing

components are also possible (e.g., Olbers andHerterich
1979). Here, we use an estimate of the near-inertial wave
flux by Rimac et al. (2013) and no other surface flux.
At the bottom, the interaction between the barotropic
tides with topographic obstacles generates a flux into
the internal wave field. Here, we use an estimate of
this flux by Jayne (2009), which was also used in Olbers
and Eden (2013). Another source at the bottom could
be related to the generation of lee waves by either the
mean flow or mesoscale eddies, which was shown by
Nikurashin and Ferrari (2011) to be as important as the
tidal forcing. To account for this effect, we add the dis-
sipated mesoscale eddy energy as a local forcing to
Eq. (3) either at the bottom or the interior, as discussed
in the next section.

c. Mesoscale eddies

A third form of dynamics that is often unresolved in
oceanmodels are mesoscale eddies. Analogous to small-
scale turbulence and internal waves, it is useful to de-
scribe this kind of turbulent flow also with an energy
equation:

r0
dEeke

dt
52$ ! (fluxes)1S2gr0w02r0!eke , (4)

where Eeke 5 (u 02 1 y02)/2 denotes the kinetic energy of
mesoscale eddy fluctuations [eddy kinetic energy
(EKE)], and u0 and r0 denote deviations by mesoscale
eddy fluctuations relative to mean velocity u and density
r. Since the hydrostatic approximation was applied to
derive Eq. (4), the contribution by w02 is absent in the
kinetic energy. A detailed derivation and discussion of
Eq. (4) is provided by many textbooks, for example,
Olbers et al. (2012). Besides a flux divergence, three
exchange terms show up in Eq. (4): exchange with the
mean kinetic S52r0u0u0 ! $hu that is given by the eddy
momentum flux acting on the lateral shear of the mean
flow, exchange with potential energy given by 2gr0w0,
and the dissipation of EKE given by !eke.
In the context of geophysical fluids, Eq. (4) is often

discussed in terms of the so-called Lorenz energy cycle
(Lorenz 1955). In this approach, it is convenient to dif-
ferentiate between available and unavailable potential
energy, since for the former the approximate form
P5 g2r2/(2r20N

2
0) can be given, where N2

0(z) denotes
a stability frequency related to a reference density,
usually taken as the horizontally averaged density, and
r denotes a perturbation from that reference density
(Lorenz 1955). Note that an exact definition for avail-
able potential energy for the ocean in the presence of
compressibility and a nonlinear equation of state was
given by Tailleux (2013). For use in parameterizations,
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vertical wavenumbers. It is then assumed that the dis-
sipation of waves acts nearly symmetric with respect to
upward- and downward-propagating waves and that the
effect of wave–wave interaction is to damp asymmetries
in upward- and downward-propagating waves with
a time scale ty on the order of days.
The dissipation of internal wave energy, that is, the

flux into the highest vertical wavenumbers, where in-
ternal gravity waves are assumed to break, is parame-
terized using a quadratic dependency on total wave
energy, following an early suggestion by Olbers (1976)
(McComas and Müller 1981). This form is supported by
Henyey et al. (1986) and is also usually used (in slightly
modified form) for estimates of internal wave energy
dissipation (Gregg 1989; Polzin et al. 1995; Sun and
Kunze 1999). The mean vertical group velocity c0 of the
upward- or downward-propagating waves is calculated
assuming a prescribed spectrum of internal gravity
waves, that is, a ‘‘GM spectrum’’ in a form specified by
Munk (1981). For time scales longer than ty, the total
energy of internal waves Eiw is governed by

›tEiw5›zc0ty›zc0Eiw1$h ! y0th$hy0Eiw2!iw , (3)

with the parameterization by McComas and Müller
(1981) !iw 5mfE2

iw/c
2
w, with the parameter m5O(1), and

with cw related to the bandwidth of the GM spectrum in
wavenumber space. The term y0 denotes the mean
horizontal group velocity of internal waves analogous to
c0. The vertical symmetrization of internal waves by
wave–wave interaction on the time scale ty leads to
a vertical diffusion of total wave energy Eiw. The hori-
zontal anisotropy of the internal wave fields is shown in
Olbers and Eden (2013) to be equivalent to zero order to
horizontal diffusion of Eiw in Eq. (3), where th is a time
scale on the order of days representing the horizontal
symmetrization of the wave field. More details on the
derivation of the closure for internal wave energy and
dissipation can be found in Olbers and Eden (2013). The
model for internal waves can be extended with com-
partments of the low vertical mode near-inertial waves
and internal tides as shown in Eden andOlbers (2014) to
account for the different lateral propagation character-
istics of the low modes, but this extension is not used
here. We use an identical parameter as in Olbers and
Eden (2013) in the closure Eq. (3).
The forcing of internal waves in the form of energy

fluxes enters Eq. (3) as a flux at the surface and bottom
via the vertical boundary condition of the flux diver-
gences in Eq. (3) (we use zero fluxes at lateral bound-
aries). At the surface, this energy flux is thought to be
given by wind-generated near-inertial waves radiating
down from the surface mixed layer, but other forcing

components are also possible (e.g., Olbers andHerterich
1979). Here, we use an estimate of the near-inertial wave
flux by Rimac et al. (2013) and no other surface flux.
At the bottom, the interaction between the barotropic
tides with topographic obstacles generates a flux into
the internal wave field. Here, we use an estimate of
this flux by Jayne (2009), which was also used in Olbers
and Eden (2013). Another source at the bottom could
be related to the generation of lee waves by either the
mean flow or mesoscale eddies, which was shown by
Nikurashin and Ferrari (2011) to be as important as the
tidal forcing. To account for this effect, we add the dis-
sipated mesoscale eddy energy as a local forcing to
Eq. (3) either at the bottom or the interior, as discussed
in the next section.

c. Mesoscale eddies

A third form of dynamics that is often unresolved in
oceanmodels are mesoscale eddies. Analogous to small-
scale turbulence and internal waves, it is useful to de-
scribe this kind of turbulent flow also with an energy
equation:

r0
dEeke

dt
52$ ! (fluxes)1S2gr0w02r0!eke , (4)

where Eeke 5 (u 02 1 y02)/2 denotes the kinetic energy of
mesoscale eddy fluctuations [eddy kinetic energy
(EKE)], and u0 and r0 denote deviations by mesoscale
eddy fluctuations relative to mean velocity u and density
r. Since the hydrostatic approximation was applied to
derive Eq. (4), the contribution by w02 is absent in the
kinetic energy. A detailed derivation and discussion of
Eq. (4) is provided by many textbooks, for example,
Olbers et al. (2012). Besides a flux divergence, three
exchange terms show up in Eq. (4): exchange with the
mean kinetic S52r0u0u0 ! $hu that is given by the eddy
momentum flux acting on the lateral shear of the mean
flow, exchange with potential energy given by 2gr0w0,
and the dissipation of EKE given by !eke.
In the context of geophysical fluids, Eq. (4) is often

discussed in terms of the so-called Lorenz energy cycle
(Lorenz 1955). In this approach, it is convenient to dif-
ferentiate between available and unavailable potential
energy, since for the former the approximate form
P5 g2r2/(2r20N

2
0) can be given, where N2

0(z) denotes
a stability frequency related to a reference density,
usually taken as the horizontally averaged density, and
r denotes a perturbation from that reference density
(Lorenz 1955). Note that an exact definition for avail-
able potential energy for the ocean in the presence of
compressibility and a nonlinear equation of state was
given by Tailleux (2013). For use in parameterizations,
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§ Exchange of energy between reservoirs and/or scales: conversion of eddy 

energy into the mean flow (e.g., Marshall et al 2017,  Jansen et al 2015, Bachman 2019) 



Improving the Energy Cycle + Scale-Interaction 

 Various avenues (not necessarily independent from each other) 

§ Prognostic Eddy (kinetic +/or potential) Energy Equation in 2D or 3D 
(e.g., Cessi 2008, Eden & Greatbatch, 2009, Adcroft & Marshall, 2010)

vertical wavenumbers. It is then assumed that the dis-
sipation of waves acts nearly symmetric with respect to
upward- and downward-propagating waves and that the
effect of wave–wave interaction is to damp asymmetries
in upward- and downward-propagating waves with
a time scale ty on the order of days.
The dissipation of internal wave energy, that is, the

flux into the highest vertical wavenumbers, where in-
ternal gravity waves are assumed to break, is parame-
terized using a quadratic dependency on total wave
energy, following an early suggestion by Olbers (1976)
(McComas and Müller 1981). This form is supported by
Henyey et al. (1986) and is also usually used (in slightly
modified form) for estimates of internal wave energy
dissipation (Gregg 1989; Polzin et al. 1995; Sun and
Kunze 1999). The mean vertical group velocity c0 of the
upward- or downward-propagating waves is calculated
assuming a prescribed spectrum of internal gravity
waves, that is, a ‘‘GM spectrum’’ in a form specified by
Munk (1981). For time scales longer than ty, the total
energy of internal waves Eiw is governed by

›tEiw5›zc0ty›zc0Eiw1$h ! y0th$hy0Eiw2!iw , (3)

with the parameterization by McComas and Müller
(1981) !iw 5mfE2

iw/c
2
w, with the parameter m5O(1), and

with cw related to the bandwidth of the GM spectrum in
wavenumber space. The term y0 denotes the mean
horizontal group velocity of internal waves analogous to
c0. The vertical symmetrization of internal waves by
wave–wave interaction on the time scale ty leads to
a vertical diffusion of total wave energy Eiw. The hori-
zontal anisotropy of the internal wave fields is shown in
Olbers and Eden (2013) to be equivalent to zero order to
horizontal diffusion of Eiw in Eq. (3), where th is a time
scale on the order of days representing the horizontal
symmetrization of the wave field. More details on the
derivation of the closure for internal wave energy and
dissipation can be found in Olbers and Eden (2013). The
model for internal waves can be extended with com-
partments of the low vertical mode near-inertial waves
and internal tides as shown in Eden andOlbers (2014) to
account for the different lateral propagation character-
istics of the low modes, but this extension is not used
here. We use an identical parameter as in Olbers and
Eden (2013) in the closure Eq. (3).
The forcing of internal waves in the form of energy

fluxes enters Eq. (3) as a flux at the surface and bottom
via the vertical boundary condition of the flux diver-
gences in Eq. (3) (we use zero fluxes at lateral bound-
aries). At the surface, this energy flux is thought to be
given by wind-generated near-inertial waves radiating
down from the surface mixed layer, but other forcing

components are also possible (e.g., Olbers andHerterich
1979). Here, we use an estimate of the near-inertial wave
flux by Rimac et al. (2013) and no other surface flux.
At the bottom, the interaction between the barotropic
tides with topographic obstacles generates a flux into
the internal wave field. Here, we use an estimate of
this flux by Jayne (2009), which was also used in Olbers
and Eden (2013). Another source at the bottom could
be related to the generation of lee waves by either the
mean flow or mesoscale eddies, which was shown by
Nikurashin and Ferrari (2011) to be as important as the
tidal forcing. To account for this effect, we add the dis-
sipated mesoscale eddy energy as a local forcing to
Eq. (3) either at the bottom or the interior, as discussed
in the next section.

c. Mesoscale eddies

A third form of dynamics that is often unresolved in
oceanmodels are mesoscale eddies. Analogous to small-
scale turbulence and internal waves, it is useful to de-
scribe this kind of turbulent flow also with an energy
equation:

r0
dEeke

dt
52$ ! (fluxes)1S2gr0w02r0!eke , (4)

where Eeke 5 (u 02 1 y02)/2 denotes the kinetic energy of
mesoscale eddy fluctuations [eddy kinetic energy
(EKE)], and u0 and r0 denote deviations by mesoscale
eddy fluctuations relative to mean velocity u and density
r. Since the hydrostatic approximation was applied to
derive Eq. (4), the contribution by w02 is absent in the
kinetic energy. A detailed derivation and discussion of
Eq. (4) is provided by many textbooks, for example,
Olbers et al. (2012). Besides a flux divergence, three
exchange terms show up in Eq. (4): exchange with the
mean kinetic S52r0u0u0 ! $hu that is given by the eddy
momentum flux acting on the lateral shear of the mean
flow, exchange with potential energy given by 2gr0w0,
and the dissipation of EKE given by !eke.
In the context of geophysical fluids, Eq. (4) is often

discussed in terms of the so-called Lorenz energy cycle
(Lorenz 1955). In this approach, it is convenient to dif-
ferentiate between available and unavailable potential
energy, since for the former the approximate form
P5 g2r2/(2r20N

2
0) can be given, where N2

0(z) denotes
a stability frequency related to a reference density,
usually taken as the horizontally averaged density, and
r denotes a perturbation from that reference density
(Lorenz 1955). Note that an exact definition for avail-
able potential energy for the ocean in the presence of
compressibility and a nonlinear equation of state was
given by Tailleux (2013). For use in parameterizations,
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vertical wavenumbers. It is then assumed that the dis-
sipation of waves acts nearly symmetric with respect to
upward- and downward-propagating waves and that the
effect of wave–wave interaction is to damp asymmetries
in upward- and downward-propagating waves with
a time scale ty on the order of days.
The dissipation of internal wave energy, that is, the

flux into the highest vertical wavenumbers, where in-
ternal gravity waves are assumed to break, is parame-
terized using a quadratic dependency on total wave
energy, following an early suggestion by Olbers (1976)
(McComas and Müller 1981). This form is supported by
Henyey et al. (1986) and is also usually used (in slightly
modified form) for estimates of internal wave energy
dissipation (Gregg 1989; Polzin et al. 1995; Sun and
Kunze 1999). The mean vertical group velocity c0 of the
upward- or downward-propagating waves is calculated
assuming a prescribed spectrum of internal gravity
waves, that is, a ‘‘GM spectrum’’ in a form specified by
Munk (1981). For time scales longer than ty, the total
energy of internal waves Eiw is governed by

›tEiw5›zc0ty›zc0Eiw1$h ! y0th$hy0Eiw2!iw , (3)

with the parameterization by McComas and Müller
(1981) !iw 5mfE2
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2
w, with the parameter m5O(1), and

with cw related to the bandwidth of the GM spectrum in
wavenumber space. The term y0 denotes the mean
horizontal group velocity of internal waves analogous to
c0. The vertical symmetrization of internal waves by
wave–wave interaction on the time scale ty leads to
a vertical diffusion of total wave energy Eiw. The hori-
zontal anisotropy of the internal wave fields is shown in
Olbers and Eden (2013) to be equivalent to zero order to
horizontal diffusion of Eiw in Eq. (3), where th is a time
scale on the order of days representing the horizontal
symmetrization of the wave field. More details on the
derivation of the closure for internal wave energy and
dissipation can be found in Olbers and Eden (2013). The
model for internal waves can be extended with com-
partments of the low vertical mode near-inertial waves
and internal tides as shown in Eden andOlbers (2014) to
account for the different lateral propagation character-
istics of the low modes, but this extension is not used
here. We use an identical parameter as in Olbers and
Eden (2013) in the closure Eq. (3).
The forcing of internal waves in the form of energy

fluxes enters Eq. (3) as a flux at the surface and bottom
via the vertical boundary condition of the flux diver-
gences in Eq. (3) (we use zero fluxes at lateral bound-
aries). At the surface, this energy flux is thought to be
given by wind-generated near-inertial waves radiating
down from the surface mixed layer, but other forcing

components are also possible (e.g., Olbers andHerterich
1979). Here, we use an estimate of the near-inertial wave
flux by Rimac et al. (2013) and no other surface flux.
At the bottom, the interaction between the barotropic
tides with topographic obstacles generates a flux into
the internal wave field. Here, we use an estimate of
this flux by Jayne (2009), which was also used in Olbers
and Eden (2013). Another source at the bottom could
be related to the generation of lee waves by either the
mean flow or mesoscale eddies, which was shown by
Nikurashin and Ferrari (2011) to be as important as the
tidal forcing. To account for this effect, we add the dis-
sipated mesoscale eddy energy as a local forcing to
Eq. (3) either at the bottom or the interior, as discussed
in the next section.

c. Mesoscale eddies

A third form of dynamics that is often unresolved in
oceanmodels are mesoscale eddies. Analogous to small-
scale turbulence and internal waves, it is useful to de-
scribe this kind of turbulent flow also with an energy
equation:

r0
dEeke

dt
52$ ! (fluxes)1S2gr0w02r0!eke , (4)

where Eeke 5 (u 02 1 y02)/2 denotes the kinetic energy of
mesoscale eddy fluctuations [eddy kinetic energy
(EKE)], and u0 and r0 denote deviations by mesoscale
eddy fluctuations relative to mean velocity u and density
r. Since the hydrostatic approximation was applied to
derive Eq. (4), the contribution by w02 is absent in the
kinetic energy. A detailed derivation and discussion of
Eq. (4) is provided by many textbooks, for example,
Olbers et al. (2012). Besides a flux divergence, three
exchange terms show up in Eq. (4): exchange with the
mean kinetic S52r0u0u0 ! $hu that is given by the eddy
momentum flux acting on the lateral shear of the mean
flow, exchange with potential energy given by 2gr0w0,
and the dissipation of EKE given by !eke.
In the context of geophysical fluids, Eq. (4) is often

discussed in terms of the so-called Lorenz energy cycle
(Lorenz 1955). In this approach, it is convenient to dif-
ferentiate between available and unavailable potential
energy, since for the former the approximate form
P5 g2r2/(2r20N

2
0) can be given, where N2

0(z) denotes
a stability frequency related to a reference density,
usually taken as the horizontally averaged density, and
r denotes a perturbation from that reference density
(Lorenz 1955). Note that an exact definition for avail-
able potential energy for the ocean in the presence of
compressibility and a nonlinear equation of state was
given by Tailleux (2013). For use in parameterizations,

3164 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 44

§ Exchange of energy between reservoirs and/or scales: conversion of eddy 

energy into the mean flow (e.g., Marshall et al 2017,  Jansen et al 2015, Bachman 2019) 

§ Momentum closures for scale interaction

➡ Holm et al 2008: Lagrangian Averaged Navier Stokes-alpha model 

➡ Berloff 2005: Stochastic Reynolds stresses

➡ Porta Mana & Zanna 2014: Non-Newtonian Stress to parameterize 

turbulent fluxes by capturing both the inverse energy cascade & 

momentum fluxes



Our Approach: Reynolds Stresses ~ Non-Newtonian Flow

§ Eddy forcing = Non-Newtonian / Rivlin-Ericksen Forcing (Rivlin Ericksen 1955, Rivlin 1957)

Mana & Zanna 2014, Anstey & Zanna 2017, Zanna et al 2017, Bachman et al 2018, Kjjellson et al, (In Prep) 

American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by
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where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
0.1 m; from Niiler et al. 2003) in
the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions
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American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by
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where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
0.1 m; from Niiler et al. 2003) in
the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions
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noise in y is Gaussian, then the probability density of hx̂i is also Gaussian with mean x̂

and covariance Sx̂.

Let’s go back to state estimate in the real world

Main Aim: Combine understanding of atmospheric and oceanic physics with obser-

vations to estimate the state of the system as accurately as possible + make predictions

In atmospheric remote sounding , the measurement operator K is determined by

radiative transfer; additional constraints can be used such as knowledge of optical depth

in a given range of wavenumbers

In the ocean, dynamics is often used to estimate the state. Scales of motions in the

ocean are typically much smaller than the atmosphere and observations are much sparser.

The problem of estimating the flow in the oceans interior is likely to be underdetermined,

the matrix K has more columns than rows.

The ocean circulation is governed by

• Newtons laws (Navier-Stokes equation)

@u

@t
+ (u ·r)u = gẑ� 1

⇢
rp� 2⌦⇥ u+ ⌫r2u+ Fext (1.14)

where v is the 3D velocity and Fext is the external wind forcing.

• Newtons laws (Navier-Stokes equation)

@v

@t
+ (v ·r)v = gẑ� 1

⇢
rp� 2⌦⇥ v + ⌫r2v + Fext (1.15)

where v is the 3D velocity and Fext is the external wind forcing.

• Thermodynamics laws - heat and salt for a stratified fluid (tracer equations),
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A1 = 2S (4)

A2 =
DA1

Dt
+ ru

T
A1 + A1ru. (5)

The operator93

D/Dt = @t + u · r (6)

is the usual material derivative. The equations of motion for this system state that the acceleration of the94

fluid is equal to the divergence of the stress tensor,95

Du

Dt
=

1
⇢0

div�. (7)

Together with the additional thermodynamical constraints (Dunn and Fosdick, 1974)96

µ � 0, ↵1 + ↵2 = 0, ↵1 � 0, (8)

we will show that the momentum equations for second-grade fluids take the general form97

Dv

Dt
+ ru

T · v = � 1
⇢0
rP + ⌫r2

u + F

v =
⇣
1 � ↵r2

⌘
u (9)

↵ =
↵1

⇢0
.

The Lagrangian derivative in (9), and in all subsequent expressions, remains as defined in (6). Here we have98

introduced the kinematic viscosity, ⌫ = µ/⇢0, and a rescaled stress modulus, ↵, for brevity and assume that99

they are both constant and positive. P is a modified pressure whose exact form depends on whether one100

chooses to neglect terms in the nonlinear stress A2, which is the scenario explored by AZ. F represents101

extra terms that also appear in the momentum equations when terms in A2 are neglected, as will be shown102

in Sections 3.3 and 3.4. When no terms in A2 are neglected F = 0.103

A unique feature of (9) is the appearance of a second velocity, v, which is related to u by a Helmholtz104

operator. The interpretation of this velocity is a crucial di↵erence between second-grade fluids and LANS-105

↵. In the context of second-grade fluids it is appropriate to think of the nonlinear stress A2 as introducing106

several extra terms into the momentum equations that are dependent on the stress modulus ↵. Introducing v107

allows us to write these equations more succinctly but it is not physically meaningful in and of itself. LANS-108

↵ considers the advecting velocity u to be a filtered version of v, where the notion of filtering the velocity109

arises through the Lagrangian averaging procedure (Hecht et al., 2008a). The filter itself is represented by110

the Helmholtz operator relating u and v, and acts to suppress small-scale structures in v (Foias et al., 2001).111

This inspires alternative names for u and v as the smooth and rough velocity, respectively (e.g. Hecht et al.,112

2008a,b; Petersen et al., 2008).113

Excluding the viscous term, (9) is identical to the three-dimensional form of the Camassa-Holm equation114

(Camassa and Holm, 1993), also known as the Lagrangian-averaged Euler-↵ (LAE-↵) equations (Holm et al.,115

1998a,b; Bhat et al., 2005). The LAE-↵ interpretation of these equations has been arrived at from multiple116
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2. A brief discussion of second-grade fluids and LANS-↵66

An extensive body of literature exists which discusses the mathematics and physics of both non-Newtonian67

fluids and LANS-↵, whose scope deserves a far more thorough discussion than is possible here.1 Here only68

a few key elements in the development of both are mentioned.69

Much of the nomenclature used in discussing non-Newtonian fluids stems from continuum mechanics,70

and is intended to extend to general coordinate systems and moving frames of reference. Objects defined71

below which may have familiar names in the oceanographic literature, such as the strain rate tensor, S, or72

vorticity tensor, W, may instead be formally referred to as the rate of deformation tensor and spin tensor,73

respectively. Other functions of these tensors and their time derivatives often appear. To keep this derivation74

accessible, here we will restrict consideration to a Cartesian, Eulerian frame, with velocity vector u =75

(u, v,w). The velocity gradient tensor is defined as76

ru =

2
666666664

ux uy uz
vx vy vz
wx wy wz

3
777777775 , (1)

and its symmetric and antisymmetric parts as,77
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and W =
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2
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T
⌘
, (2)

where ru
T refers to the transpose of (1). Additionally, we will assume the fluid is Boussinesq, allowing us78

to replace variable density, ⇢, with a constant, ⇢0.79

An incompressible second-grade fluid is a particular class of non-Newtonian Rivlin-Ericksen fluids of80

di↵erential type (Rivlin and Ericksen, 1955), which are materials in which only a very short part of the81

deformation history has an influence on the stress. Mathematically, this simply means that the stress in82

Rivlin-Ericksen fluids is treated as a function of the velocity gradient and some number of its higher time83

derivatives. For a second-grade fluid, the stress tensor is the sum of all tensors which can be formed using84

up to two spatial derivatives of the velocity field, and can be written (Criminale et al., 1958; Coleman and85

Noll, 1960)86
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1. (3)

Here p is the thermodynamic pressure and µ, ↵1 and ↵2 are material moduli and are properties of the flow87

rheology, with µ being the familiar dynamic viscosity. While cases where the moduli are treated as functions88

of the strain rate have been considered (e.g. Criminale et al., 1958), the rheology is generally assumed to be89

homogeneous so that the viscosity and other stress moduli are treated as constants. A1 and A2 are the first90

and second Rivlin-Ericksen tensors, which represent the lowest-order approximations of the deformation91

history:92

1For an excellent retrospective on the theory of incompressible second-grade fluids, the reader is encouraged to consult Dunn and
Rajagopal (1995). Likewise, an interesting exposition on the development of LANS-↵ from concept to turbulence closure can be found
in Holm et al. (2005).
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The Lagrangian derivative in (9), and in all subsequent expressions, remains as defined in (6). Here we have98

introduced the kinematic viscosity, ⌫ = µ/⇢0, and a rescaled stress modulus, ↵, for brevity and assume that99

they are both constant and positive. P is a modified pressure whose exact form depends on whether one100

chooses to neglect terms in the nonlinear stress A2, which is the scenario explored by AZ. F represents101

extra terms that also appear in the momentum equations when terms in A2 are neglected, as will be shown102

in Sections 3.3 and 3.4. When no terms in A2 are neglected F = 0.103

A unique feature of (9) is the appearance of a second velocity, v, which is related to u by a Helmholtz104

operator. The interpretation of this velocity is a crucial di↵erence between second-grade fluids and LANS-105

↵. In the context of second-grade fluids it is appropriate to think of the nonlinear stress A2 as introducing106

several extra terms into the momentum equations that are dependent on the stress modulus ↵. Introducing v107

allows us to write these equations more succinctly but it is not physically meaningful in and of itself. LANS-108

↵ considers the advecting velocity u to be a filtered version of v, where the notion of filtering the velocity109

arises through the Lagrangian averaging procedure (Hecht et al., 2008a). The filter itself is represented by110

the Helmholtz operator relating u and v, and acts to suppress small-scale structures in v (Foias et al., 2001).111

This inspires alternative names for u and v as the smooth and rough velocity, respectively (e.g. Hecht et al.,112

2008a,b; Petersen et al., 2008).113

Excluding the viscous term, (9) is identical to the three-dimensional form of the Camassa-Holm equation114

(Camassa and Holm, 1993), also known as the Lagrangian-averaged Euler-↵ (LAE-↵) equations (Holm et al.,115

1998a,b; Bhat et al., 2005). The LAE-↵ interpretation of these equations has been arrived at from multiple116
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rheology, with µ being the familiar dynamic viscosity. While cases where the moduli are treated as functions88

of the strain rate have been considered (e.g. Criminale et al., 1958), the rheology is generally assumed to be89

homogeneous so that the viscosity and other stress moduli are treated as constants. A1 and A2 are the first90

and second Rivlin-Ericksen tensors, which represent the lowest-order approximations of the deformation91
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Our Approach: Reynolds Stresses ~ Non-Newtonian Flow

§ Eddy forcing = Non-Newtonian / Rivlin-Ericksen Forcing (Rivlin Ericksen 1955, Rivlin 1957)

Mana & Zanna 2014, Anstey & Zanna 2017, Zanna et al 2017, Bachman et al 2018, Kjjellson et al, (In Prep) 

American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by
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where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
0.1 m; from Niiler et al. 2003) in
the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions
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noise in y is Gaussian, then the probability density of hx̂i is also Gaussian with mean x̂

and covariance Sx̂.

Let’s go back to state estimate in the real world

Main Aim: Combine understanding of atmospheric and oceanic physics with obser-

vations to estimate the state of the system as accurately as possible + make predictions

In atmospheric remote sounding , the measurement operator K is determined by

radiative transfer; additional constraints can be used such as knowledge of optical depth

in a given range of wavenumbers

In the ocean, dynamics is often used to estimate the state. Scales of motions in the

ocean are typically much smaller than the atmosphere and observations are much sparser.

The problem of estimating the flow in the oceans interior is likely to be underdetermined,

the matrix K has more columns than rows.

The ocean circulation is governed by

• Newtons laws (Navier-Stokes equation)

@u

@t
+ (u ·r)u = gẑ� 1

⇢
rp� 2⌦⇥ u+ ⌫r2u+ Fext (1.14)

where v is the 3D velocity and Fext is the external wind forcing.

• Newtons laws (Navier-Stokes equation)
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⇢
rp� 2⌦⇥ v + ⌫r2v + Fext (1.15)

where v is the 3D velocity and Fext is the external wind forcing.

• Thermodynamics laws - heat and salt for a stratified fluid (tracer equations),
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where ru
T refers to the transpose of (1). Additionally, we will assume the fluid is Boussinesq, allowing us78

to replace variable density, ⇢, with a constant, ⇢0.79
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di↵erential type (Rivlin and Ericksen, 1955), which are materials in which only a very short part of the81

deformation history has an influence on the stress. Mathematically, this simply means that the stress in82

Rivlin-Ericksen fluids is treated as a function of the velocity gradient and some number of its higher time83

derivatives. For a second-grade fluid, the stress tensor is the sum of all tensors which can be formed using84

up to two spatial derivatives of the velocity field, and can be written (Criminale et al., 1958; Coleman and85

Noll, 1960)86
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Here p is the thermodynamic pressure and µ, ↵1 and ↵2 are material moduli and are properties of the flow87

rheology, with µ being the familiar dynamic viscosity. While cases where the moduli are treated as functions88

of the strain rate have been considered (e.g. Criminale et al., 1958), the rheology is generally assumed to be89

homogeneous so that the viscosity and other stress moduli are treated as constants. A1 and A2 are the first90

and second Rivlin-Ericksen tensors, which represent the lowest-order approximations of the deformation91

history:92

1For an excellent retrospective on the theory of incompressible second-grade fluids, the reader is encouraged to consult Dunn and
Rajagopal (1995). Likewise, an interesting exposition on the development of LANS-↵ from concept to turbulence closure can be found
in Holm et al. (2005).
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The Lagrangian derivative in (9), and in all subsequent expressions, remains as defined in (6). Here we have98

introduced the kinematic viscosity, ⌫ = µ/⇢0, and a rescaled stress modulus, ↵, for brevity and assume that99

they are both constant and positive. P is a modified pressure whose exact form depends on whether one100

chooses to neglect terms in the nonlinear stress A2, which is the scenario explored by AZ. F represents101

extra terms that also appear in the momentum equations when terms in A2 are neglected, as will be shown102

in Sections 3.3 and 3.4. When no terms in A2 are neglected F = 0.103

A unique feature of (9) is the appearance of a second velocity, v, which is related to u by a Helmholtz104

operator. The interpretation of this velocity is a crucial di↵erence between second-grade fluids and LANS-105

↵. In the context of second-grade fluids it is appropriate to think of the nonlinear stress A2 as introducing106

several extra terms into the momentum equations that are dependent on the stress modulus ↵. Introducing v107

allows us to write these equations more succinctly but it is not physically meaningful in and of itself. LANS-108

↵ considers the advecting velocity u to be a filtered version of v, where the notion of filtering the velocity109

arises through the Lagrangian averaging procedure (Hecht et al., 2008a). The filter itself is represented by110

the Helmholtz operator relating u and v, and acts to suppress small-scale structures in v (Foias et al., 2001).111

This inspires alternative names for u and v as the smooth and rough velocity, respectively (e.g. Hecht et al.,112

2008a,b; Petersen et al., 2008).113

Excluding the viscous term, (9) is identical to the three-dimensional form of the Camassa-Holm equation114

(Camassa and Holm, 1993), also known as the Lagrangian-averaged Euler-↵ (LAE-↵) equations (Holm et al.,115

1998a,b; Bhat et al., 2005). The LAE-↵ interpretation of these equations has been arrived at from multiple116
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2. A brief discussion of second-grade fluids and LANS-↵66
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a few key elements in the development of both are mentioned.69
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(u, v,w). The velocity gradient tensor is defined as76
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2
666666664
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3
777777775 , (1)
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1
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1
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T
⌘
, (2)

where ru
T refers to the transpose of (1). Additionally, we will assume the fluid is Boussinesq, allowing us78

to replace variable density, ⇢, with a constant, ⇢0.79

An incompressible second-grade fluid is a particular class of non-Newtonian Rivlin-Ericksen fluids of80

di↵erential type (Rivlin and Ericksen, 1955), which are materials in which only a very short part of the81

deformation history has an influence on the stress. Mathematically, this simply means that the stress in82

Rivlin-Ericksen fluids is treated as a function of the velocity gradient and some number of its higher time83

derivatives. For a second-grade fluid, the stress tensor is the sum of all tensors which can be formed using84

up to two spatial derivatives of the velocity field, and can be written (Criminale et al., 1958; Coleman and85

Noll, 1960)86

� = �pI + µA1 + ↵1A2 + ↵2A
2
1. (3)

Here p is the thermodynamic pressure and µ, ↵1 and ↵2 are material moduli and are properties of the flow87

rheology, with µ being the familiar dynamic viscosity. While cases where the moduli are treated as functions88

of the strain rate have been considered (e.g. Criminale et al., 1958), the rheology is generally assumed to be89

homogeneous so that the viscosity and other stress moduli are treated as constants. A1 and A2 are the first90

and second Rivlin-Ericksen tensors, which represent the lowest-order approximations of the deformation91

history:92

1For an excellent retrospective on the theory of incompressible second-grade fluids, the reader is encouraged to consult Dunn and
Rajagopal (1995). Likewise, an interesting exposition on the development of LANS-↵ from concept to turbulence closure can be found
in Holm et al. (2005).
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Figure 2: (a) Schematic of horizontal structure in x, y-plane of streamfunction for a
banana-shaped eddy, i.e. an eddy that tilts with the shear. The meridional (y-direction)
structure of the zonal-mean (indicated, in this figure only, by an overbar) tendencies as-
sociated with this eddy due to a stress tensor T = 2(SW�WS) are shown for (b) zonal
velocity, (c) meridional velocity and (d) vorticity. Units are arbitrary. In (b-d), the red
line corresponds to the actual Reynolds stress and the black line to the parameterisation
forcing, and positive (negative) tendencies lie to the right (left) of the thin vertical line.

Figure 3: Time-mean streamfunction (Sv, filled contours) with superimposed time-mean
zonal velocity (m s�1, line contours) for the idealised primitive equations model with 7.5
km horizontal resolution. Time mean of [what days] days of the model run and vertical
average over the [range of depths] layer are shown.
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 Black = eddy momentum fluxes  Red = Non-Newtonian fluxes

Steady
American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by

@u
@t

þ u "rh u # f u ¼ # 1
r0

@p
@x

þ Fx

r0
ð1Þ

@u
@t

þ u "rh uþ fu ¼ # 1
r0

@p
@y

þ
Fy

r0
ð2Þ

where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives

@u
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þ u
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
0.1 m; from Niiler et al. 2003) in
the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions

Ocean Dynamics (2010) 60:617–628 619

FIG. 1. a) Schematic eddy deformation similar to Anstey and Zanna (2017). b) Zonal mean zonal momentum

tendency from the flow (black dashed) and advective part of the parameterisation (red). c) Zonal mean zonal

momentum tendency from the local time derivative of the flow (black dashed) and the parameterisation (red).
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Energy Transfer
§ Impact of parametrization: to compensate for the loss of energy from 

viscosity & kappa is scale-aware

fluxes bares much similarity to the LANS-a parameterisation (Holm et al.; Hecht et al. 2008a), in118

which case the coefficient k is similar to their �a2.119

120

For an primitive-equation OGCM, it is attractive to write the RE parameterisation presented here121

as in Eq. 6122

∂u

∂ t
= 2k—2 du

dt
, (9)

since du/dt is readily available in the model. In a Lagrangian trajectory model, it is easier to123

use Eq. 7,124

∂u

∂ t
= 2k d—2

u

dt
+2k(—2

u ·—)u (10)

where the time derivative in the first term is taken along the particle trajectory, and the second125

term can be evaluated locally from the OGCM velocity fields. In this paper, we will diagnose the126

form in Eq. 6 from data from an OGCM, and then implement the form in Eq. 7 into a Lagrangian127

trajectory model.128

129

b. Kinetic energy130

The KE tendency from the RE parameterisation used here can be found by multiplying the131

momentum tendency by the velocity,132

∂EK

∂ t
= u ·k d—2

u

dt
+u ·k(—2

u ·—)u = u ·k—2 ∂u

∂ t
+u ·k—2 [(u ·—)u] . (11)

We note that133
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We can again rewrite the right hand side to become
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The horizontal averaging again eliminates the divergence term, leaving

@

@t

Z

V
K dV = �⌫

⇣
r · r ̃

⌘
, (15)
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We may now observe a few properties of the preceding equations. For negative  (as recommended in

MZ14 and Z17) the operator

⇣
1 � r2

⌘�1

acts as a roughener. The operator rn
also acts as a roughener

for even values of n � 2. Then the right side of (15) is essentially a positive number, (�⌫), multiplying a

vector field dotted into a roughened version of itself. The overall tendency of Z17 is thus likely to increase the

kinetic energy. Interestingly, this e↵ect is linearly dependent on ⌫ (just like the e↵ect of eddy viscosity, except

of opposite sign), raising the possibility that this energy increase may compensate for the eddy viscosity

energy sink no matter how big or small ⌫ may be.
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Energy Transfer
§ Impact of parametrization: to compensate for the loss of energy from 

viscosity & kappa is scale-aware

Kjellsson & Zanna, 2017
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§ Stronger inverse cascade  

§ More APE removal at large scale 
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§ Stronger inverse cascade  
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§ Issues: very sensitive to sub-grid 

dissipation, and numerically unstable



kinetic equation, which is vertically integrated, such that:51

@

@t
E =

sourcesz }| {
Ėb + �⌘Ė⌘ + �vĖv �

local dissipationz }| {
(�+ Cd|Ud|�2

b
)E+

smoothingz }| {
r · ((E + �MM)rE � 4r3E)��non�newtĖnon�newt

(9)

The equation uses all sources and sinks of mesoscale eddy kinetic energy from the parametriza-52

tions, and a redistribution term to keep the budget closed. The parameter �non�newt is53

non-dimensional and Ėnon�newt is given above. MEKE will scale the amplitude of , such54

that55

 = ↵nonnewtET 2
non�newt

, (10)

where  is the non Newtonian coe�cient set as cnon�newt�x2 [m2], ↵nonnewt is a non-dimensional56

tuning parameter (between 0 and 1) currently not used, E is MEKE in m2/s2. For dimen-57

sional purposes we need to pick a timescale Tnon�newt. Based on the ”philosophy” of PMZ14,58

the eddy variability locally gets deformed by the flow on a timescale of days. This decorre-59

lation timescale, which reprensent the timescale at which the eddy autocorrelation tapers,60

is a measure of the variability of the system. We will pick this measure for Tnon� newt61

which is the QG model was diagnosed to be around 10 days.62

6

• Energy-constrained (& still scale-aware) 

b. PMZ14/Z17 Implementation19

In Z17, we have proposed several 2D or 3D implementation of MZ14 in the momentum20

and buoyancy equation. Here we implement the 2D version of the parametrization, such21

that the non-newtonian tendency in the u and v equations are22
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(1)
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@x

Dq

Dt
,

In MZ14 and Z17, the parametrization was derived based on output of a QG model. There-23

fore, q was defined as the QG potential vorticity (PV), which is considered a linearization24

of Ertel PV25

qErtel =
f + ⇣

h
=

wa

h
. (2)

Here f = f0 + �y is the Coriolis parameter, ⇣ = k̂ ·r⇥ u is the relative vorticity, u is the26

2D horizontal velocity, and h is the layer thickness. The material derivative is @/@t+ u ·r.27

The spatial derivatives are 2D.28

The current implementation in (1) is only for absolute vorticity alone (assuming that the29

stretching term in the QG PV is small).30
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where Snon�Newt = �v + @⇣

@t
+ u.r⇣. If on an f-plane, the beta term vanishes.31

3

0 30 60 120
0

2

4

6

8

10

12

14

16

18

∆ X [km]

(a
) R

M
S 

Er
ro

r <
ψ

> 
[S

v]

Error vs. Resolution

 

 

LR
det
sto

Y 
[k

m
]

(b) HR − LR

 

 

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

X [km]

Y 
[k

m
]

(c) HR − det

 

 

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

X [km]

Y 
[k

m
]

(d) HR − sto

 

 

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

−10 −5 0 5 10

[Sv]

MOM6: HR- parametrised run

0 30 60 120
0

2

4

6

8

10

12

14

16

18

∆ X [km]

(a
) R

M
S 

Er
ro

r <
ψ

> 
[S

v]

Error vs. Resolution

 

 

LR
det
sto

Y 
[k

m
]

(b) HR − LR

 

 

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

X [km]

Y 
[k

m
]

(c) HR − det

 

 

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

X [km]

Y 
[k

m
]

(d) HR − sto

 

 

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

−10 −5 0 5 10

[Sv]

Energy Constraint in a primitive equation model

• Reduction of model bias in transport by 80%

Zanna, Adcroft et al, In Prep

• Depth-averaged Mesoscale Eddy Kinetic Energy Equation (e.g., Marshall & 

Adcroft 2010) 

∂E
∂t

= ̂Eb − λE + ∇ ⋅ γM ∇E + γnon−Newt
̂Enon−Newt



Lagrangian Modelling: Trajectories

FIG. 4. A subset of the particles (200 of ⇠ 40000) released in the South Pacific. Particles were traced using

velocity fields from the ORCA025 simulation (left), ORCA025 simulation with added parameterisation to the

Lagrangian trajectories, and the ORCA0083 simulation (right) for 1 year or until they reached Drake Passage or

north of 30�S.
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Lagrangian perspective: dispersion

Add acceleration from 2nd grade-fluid 

Enhance acceleration by factor (1+w) 
where w is randomly drawn from Gaussian 

distribution with sigma = 2.

25 km+ noise

25 km
25 km+param

8 km

• PDFs of absolute accelerations

Kjellsson et al, In  Prep
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Machine Learning & Eddy Parametrization

§ Generalisation to different 

dynamical regime

§ Predicting eddy energy 

probabilistically/stochastically  

Bolton & Zanna, 2019; Zanna et al 2018, 2019
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Eddy Momentum Fluxes

➡ jet rectification & sharpening via upgradient momentum fluxes (Starr 1963, 

Shutts 1986)

Anstey & Zanna, 2017

Figure 2: (a) Schematic of horizontal structure in x, y-plane of streamfunction for a
banana-shaped eddy, i.e. an eddy that tilts with the shear. The meridional (y-direction)
structure of the zonal-mean (indicated, in this figure only, by an overbar) tendencies as-
sociated with this eddy due to a stress tensor T = 2(SW�WS) are shown for (b) zonal
velocity, (c) meridional velocity and (d) vorticity. Units are arbitrary. In (b-d), the red
line corresponds to the actual Reynolds stress and the black line to the parameterisation
forcing, and positive (negative) tendencies lie to the right (left) of the thin vertical line.

Figure 3: Time-mean streamfunction (Sv, filled contours) with superimposed time-mean
zonal velocity (m s�1, line contours) for the idealised primitive equations model with 7.5
km horizontal resolution. Time mean of [what days] days of the model run and vertical
average over the [range of depths] layer are shown.

19

 Black = eddy momentum fluxes

American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by
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where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
0.1 m; from Niiler et al. 2003) in
the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions

Ocean Dynamics (2010) 60:617–628 619

150°E (clearly related to the meanders of the mean flow),
the negative band between 150 and 160°E and even the
positive values near 160°E, are common to both Figs. 2
and 3. Likewise, in the case of the Gulf Stream, there are
many common features; for example the “double blade”
structure immediately following the separation of the mean
flow from the coast near Cape Hatteras that was noted by
Ducet and Le Traon (2001), the impact of the New England
Seamounts to the southeast of Cape Cod, the tendency for
negative values south of Atlantic Canada, and the two lines
of positive values on either side of the Mann Eddy and
associated with the Southeast Newfoundland Rise to the
southwest and the Newfoundland Seamounts to the north.
The constancy of these features, despite the longer averaging
period we have used, is indicative of their robustness and is
consistent with the idea that bottom topography plays an
important role in locking these features in place. On the other
hand, it is difficult to see consistent evidence of positive
values being found to the south of the two currents and
negative values to the north, as one would expect if the eddies
were fluxing westerly momentum into the two jets. The
impression is rather of alternating bands of positive and
negative values following the mean flow. Figures 4 and 5
shows plots of the 13-year average of u′u′ and v′v′,
respectively, for the same regions. Again, the principal
features can found in the corresponding plots shown in
Ducet and Le Traon (2001) (their Plates 1 and 2 not repeated
here). As noted by Ducet and Le Traon (2001), the terms

involving u′u′ and v′v′ in Eq. 3 and Eq. 4 are not small
compared to the term involving u′v′ (see Plate 9 in Ducet and
Le Traon 2001) and cannot be neglected when considering
the local momentum balance. Nevertheless, the initial
impression is that it is difficult to see any coherent eddy
forcing of the mean flow that is associated locally with the
Reynolds stresses.

Returning to Fig. 2, the two most prominent features of
the Reynolds stress co-variance u′v′ in the Gulf Stream
region are the double-blade feature associated with positive
fluxes (red) near the separation point and the region of
negative fluxes (blue) near the tail, and slightly to the
west of, the Grand Banks of Newfoundland. Although not
immediately evident from the figure, the feature near
Cape Hatteras reaches an amplitude of near 1,500 cm2s−2

compared to about 500 cm2s−2 in the case of the feature
near the Grand Banks. It is worth pointing out that both of
these features can be explained by flow variations along the
direction of the mean flow, indicating that the variability
has a preference for such variability. At both locations, the
flow is constrained by the neighbouring continental slope
(see Fig. 1) which near Cape Hatteras encourages flow in
the southwest/northeast direction, as exhibited by the mean
flow, and near the Grand Banks in the northwest/southeast
direction. The tendency for the flow variability to be orientated
in these directions at these locations is also evident from the
angle of the major axis of the covariance ellipse plotted in
Fig. 5 of Scott et al. (2009; this is especially clear near Cape
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Fig. 2 The 12-year average of
the Reynold stress cross-
covariance u′v′ for the Gulf
Stream (upper panel) and the
Kuroshio (lower panel). Units
are cm2s−2. The solid lines show
the mean sea surface height
contours taken from Niiler et al.
(2003) plotted at 10-cm intervals
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from the ORCA025 configurations show great im-
provements of the modeled meandering and spreading
of the Gulf Stream compared to the ORCA1–5d
data (cf. Figs. 10c,d), and the best simulation of the
current—in particular of the detachment angle off
Cape Hatteras—is provided by the ORCA12–5d config-
uration (cf. Fig. 10e). Moreover, the coarser-grid model
configurations tend to simulate a continued coastally
bound current north of 358N, in contrast to ORCA12–
5d, that simulate accurately the northeasterly flow of
the current directed across the North Atlantic Ocean.
The relative distributions of Rupolo classes for each

dataset are presented in Fig. 13a (described in greater
detail below), and from these results it is evident that the
resolution of the horizontal grid is crucial in order to
model the dynamics of the Gulf Stream properly. In fact,
several previous studies indicate that an eddy-resolving
horizontal grid resolution (1/108 or higher) is necessary to
obtain a realistic detachment of the Gulf Steam (cf., e.g.,
Chassignet and Marshall 2008). For an extensive study
of observed and synthetic drifter-trajectory Lagrangian
time scales in the NorthAtlantic compare, for example,
Garraffo et al. (2001), Lumpkin et al. (2002), and
Veneziani et al. (2004).

2) THE KUROSHIO

The second case deals with the Kuroshio off the east
coast of Japan; a variable system where the path and
EKE of the Kuroshio Extension modulate on decadal
time because of oscillations between two dynamical
states in the atmosphere over the North Pacific Ocean

(cf. Qui and Chen 2010). Observed and modeled tra-
jectories crossing the 348N latitudinal and 1448E longi-
tudinal from southwest to northeast were extracted from
all datasets, and the results are presented in Fig. 11.
The ORCA1–5d trajectories show large similarities
with the results presented from the Gulf Stream area,
with slowly progressing currents (Fig. 11b), while the
realism of the velocity fields from the 1/48-resolution
model is increased significantly in terms of absolute dis-
persion and structure of the current compared to
ORCA1–5d (cf. Figs. 11c,d). The best representation of
the dynamical regimes was obtained by the eddy-
permitting and eddy-resolving configurations, as found
from the relative Rupolo-class distributions in Fig. 13b
(described in greater detail below). Furthermore, the
ORCA12–5d data were the most realistic simulation of
the Kuroshio detachment—near 358N, 1408E—as well as
the best representation of the current in terms of absolute
dispersion (Fig. 11e).

3) THE TROPICAL ATLANTIC

The last case regards the equatorial surface currents
in the tropical Atlantic, and trajectory segments with
starting points within the Gulf of Guinea (6108N and
6108E), and end points west of the 108W meridional
were chosen for closer analyses. The observational data
were found to be spread nearly symmetrically in two
patches around the equator (Fig. 12a), namely in the
Northern and Southern Equatorial Currents (cf., e.g.,
Lumpkin and Garzoli 2005). The observations from these
two currents show distinct differences in dynamical

FIG. 10. (a) Observed, as well as synthetic (b) ORCA1–5d, (c) ORCA025–5d, (d) ORCA025–6h, and (e) ORCA12–5d northeastward
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III (blue), and IV (red).
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zero crossings of each function (i.e., integrating until the
temporal lag is zero), and the global-average results
are presented in Table 3 along with the corresponding
standard deviation ranges. A shortcoming with this tech-
nique is, however, that it tends to overestimate the integral
time scale for trajectories with oscillatory covariance
functions—that is, for trajectories trapped in gyres or other
coherent structures in the ocean (Mariano and Ryan
2007). The Lagrangian velocity and acceleration time
scales were calculated according to the relations in Eqs. (5)
and (6) and theRupolo ratio gR [Eq. (8)] was derived from
these results and presented in Table 3. Thesemetrics show
that the global-averagedrifter time scales are best described
by the results from the high-frequency ORCA025–6h
output, while the 5-day-average datasets tend to yield
twice as large TL and Ty values compared to observations.
All model configurations except for ORCA1–5d yield
reasonable values of the global-average Rupolo ratio.
Thus, the relationship proves to cancel out the augmented
acceleration and velocity time scales of the 5-day-average
fields making the resulting gR model values realistic in
comparison to that obtained from observations. It is,
moreover, noted that the TL and Ty estimates are fairly
well described by the global-average values. However,
this is not the case for the Ta and subsequently gR as
their standard deviations are nearly equal to or, indeed,
exceed their average values (typically an indication of
the presence of two extreme modes in a distribution).

2) VELOCITY POWER SPECTRA OF THE

TRAJECTORIES

Figure 3 presents the global-average total, zonal, and
meridional spectral energy distributions of the observed
and synthetic trajectory velocity time series. The total
power spectra from the drifter observations show the same
general characteristics as the corresponding results based
on North Atlantic drifters in Rupolo et al. (1996), the
numerical results due to Hua et al. (1998), and moreover,
the spectra based on SouthernOcean drifters presented by
Elipot andGille (2009). The energy-saturation plateau in
the high-frequency band, starting at ;0.6–1 cpd (here
separated from the lower frequencies by the dash–
dotted line), is related to the dataset grid resolutions.
This range is beyond the uncertainty limit of the
spectra because the errors in the particle-position
tracking increase with the size of the model grid.
It is evident from Fig. 3a that the noneddy-permitting

ORCA1–5d configuration fails to reproduce the energy
distribution found in the observational dataset. Con-
vergence problems were noted in particular in the low-
frequency band, manifested by the oscillating distribution
for the zonal velocities (that has contaminated also the
total velocity energy spectra). The oscillation is related
to the coarse-grid resolution that precludes an accurate
simulation of some fundamental parts of the ocean cir-
culation, for example, the western boundary currents and
the mesoscale dynamics. The total spectra results from
the ORCA025 and ORCA12–5d configurations in
Fig. 3a show that these systemsmanage reasonably well
to simulate the general structure of the energy levels over
the frequency band. However, both suffer from an energy
deficit over all frequencies compared to the observations.
The analysis of zonal and meridional velocity power

spectra yields further insights on the anisotropy of the
circulation patterns (most likely because of the beta
effect and the shape of the global ocean bathymetry),
which prove to be of particular importance in the low-
frequency range with ,0.06 cpd. The meridional data
from the higher-resolution models and the observational
data asymptote at low frequencies toward a constant
value, which implies that the meridional diffusivity is
constant, while this is generally not the case for zonal
component of the ocean flow.
The intermediate time spectral gradient for the drifter

data was found to be rather well described by the scal-
ing law t25/4, consonant with the results due to Elhmaidi
et al. (1993) for ensemble dispersion of advected pas-
sive tracers in predominately hyperbolical domains (i.e.,
fixed-float regime behavior). The spectral slope of the
ORCA025–6h data (see Fig. 3b) is in best agreement with
the observations; this could imply that the relatively

FIG. 1. Global-average absolute dispersion of drifter (black),
ORCA1–5d (blue), ORCA025–5d (red), ORCA025–6h (orange),
and ORCA12–5d (green) trajectories as a function of time. The
corresponding dashed functions indicate the linear growth of the
absolute dispersion in time for t . TL.

NOVEMBER 2013 N I L S SON ET AL . 2255
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1/4o ~ 25km
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Observations

Nilsson et al, 2013

Lagrangian perspective: displacement (Brownian Motion)



Lagrangian Modelling: Absolute Diffusivity

FIG. 10. Total (zonal + meridional) absolute diffusivity, KA (Eq. B3), in ORCA025 (top) and ORCA0083

(bottom), as well as for ORCA025 trajectories with RE parameterisation (middle). Results are mapped on a

3� ⇥3� grid.
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APPENDIX B389

Statistics from Lagrangian trajectories390

Let x(t) = (x(t),y(t)) be the two-dimensional position of a particle at time t and u(t) =391

dx(t)/dt = (u(t),v(t)) be its velocity. The velocity autocorrelation is392

R(t) = 1
s2T

Z
T

0
u
0(t + t) ·u0(t) dt (B1)

where u
0(t) = u(t)�u is the ”eddy” velocity with the time mean subtracted, and s2 =< u

0 ·u0 >393

is the variance of the ”eddy” velocity. The velocity autocorrelation starts at R(0) = 1 and then394

generally decreases as a function of time. The Lagrangian time scale, TL, is a measure of how395

quickly R reaches 0 and thus represents the ”memory” of a particle. For surface drifters in the396

ocean, TL ⇡ 30 days. Using the zero crossing of R to estimate TL likely overestimates the memory397

the particle, but is commonly used (Rupolo 2007).398

399

The absolute dispersion, D
2(t), is a measure of the displacement, i.e. distance that the particle400

has traversed from its origin,401

< D
2(t)>=< |x(t)�x(t0)|2 > . (B2)

where brackets denote the mean over all particles in the simulation. The absolute dispersion402

can be split into zonal and meridional components, D
2
x(t),D

2
y(t), by integrating |x(t)� x(t0)| and403

|y(t)� y(t0)| respectively. Using the absolute dispersion, we can get the absolute diffusivity,404

KA(t) =
1
2

d < D
2(t)>

dt
, (B3)
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  Absolute Diffusivity: 

which, as absolute dispersion, can be split into zonal and meridional components, Kx,Ky. In a405

flow with a strong zonal mean, e.g. the ACC, it is often the case that D
2
x > D

2
y , and thus K ⇡ Kx,406

and thus Ky is more representative for eddy diffusivity (Klocker et al. 2012). It can be shown that407

KA(t) = s2 R t

0 R(t) dt , i.e. that the absolute diffusivity is proportional to the velocity variance408

and the integral of the velocity autocorrelation. At early times, when R(t)⇡ 1, then KA(t)⇡ s2
t,409

i.e. absolute diffusivity grows linearly with time (LaCasce 2008). At later times, when t >> TL,410

absolute diffusivity will approach a constant value (Sallée et al. 2013).411

412

The KE spectrum can be calculated from the particles as413

E(w) =
1
2
< û

⇤ · û >, (B4)

where û is the Fourier-transformed velocity and û
⇤ is the complex conjugate.414

415

Using multiple particles, we can define the relative dispersion, i.e. the square of the separation416

of two initially paired particles,417

< S
2(t)>=< |xi(t)�x j(t)|>, (B5)

where subscripts denote that the pair is made up of particles i and j, and as before, brackets418

denote average over all particles in the experiment. We define the relative diffusivity as419

KR =
1
4

d < S
2 >

dt
, (B6)

where the fraction 1/4 is chosen so that KR and KA can be expected to converge toward the same420

value at large times. In an inertial range, it can be shown that KR ⇠ S
4/3 (Batchelor 1952). At421

22

@Z

@t
/ �F ·r⇣ = 2r⇣ · Sr⇣ = � D

Dt
|r⇣|2 + 2r⇣ ·rD⇣

Dt
. (25)

For adiabatic (D⇣/Dt = 0) and incompressible 2D motion, the non-flux con-
tribution to the enstrophy budget is proportional to the parcel-following rate
of change of the (squared) magnitude of the vorticity gradient. Increasing
sharpness of vorticity gradients is associated with the cascade of enstrophy
to smaller scales (e.g. Weiss 1991, Vallis 2006). If  > 0 then the e↵ect of T
is to locally remove enstrophy when |r⇣| is increasing, consistent with the
small scales providing a sink of enstrophy.

2.4. Flux behaviour

It is helpful to consider the qualitative behaviour of the candidate stress
tensor T = 2(SW�WS). From (24), taking � = 0 and ignoring the r?⇣
term that does not a↵ect ⇣t, the vorticity flux is

F = �2Sr⇣ = �(D̃R+ +DR⇥)r⇣. (26)

As noted in Sec. 2.1, the values of D̃ and D depend on the orientation of
the x, y coordinate axes. If we choose axes at angle � = 1

2 tan
�1(D/D̃) with

respect to the original x-axis, then D = 0 and hence D̃ = � in this frame 3,
and the vorticity flux is F = ��R+r⇣.

Figure 1 indicates schematically the sense of F . Here we suppose that �
represents the e↵ect of a larger-scale deforming flow on a smaller-scale patch
of vorticity. Note that since r ·F is nonlinear, its vorticity tendency involves
transfer of information between di↵erent spatial scales. Explicitly, consider a
2D Fourier expansion of the streamfunction,  =

P
k  k(t) exp(ik ·x), where

 k(t) is the time-dependent Fourier amplitude of spatial mode k. Thenr·F ,
from (20) and noting that ⇣ = r2 , D̃ = �2 xy, D = � , is

3The new x-axis is conventionally referred to as the “deformation axis”, and physically
it represents the direction along which fluid parcels are stretched. See Spensberger and
Spengler (2014) for further discussion.
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updated each time they enter an adjacent grid cell or a new OGCM field becomes available after536

a time DtGCM = 5 days. For our ORCA025 particles, particles are typically updated ⇠ 10 times537

over time DtGCM. We find that updating uturb each time the particle position is calculated gives538

smoother solutions than if uturb is only updated each time a new velocity field is available. Döös539

et al. (2017) showed that the assumption on stepwise stationarity can be relaxed and the solution540

improved. However, we have not tested this method with the RE parameterisation.541
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0(t) = u(t)�u is the ”eddy” velocity with the time mean subtracted, and s2 =< u
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is the variance of the ”eddy” velocity. The velocity autocorrelation starts at R(0) = 1 and then547

generally decreases as a function of time. The Lagrangian time scale, TL, is a measure of how548

quickly R reaches 0 and thus represents the ”memory” of a particle. For surface drifters in the549
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where brackets denote the mean over all particles in the simulation. The absolute dispersion555

can be split into zonal and meridional components, D
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y(t), by integrating |x(t)� x(t0)| and556

|y(t)� y(t0)| respectively. Using the absolute dispersion, we can get the absolute diffusivity,557

KA(t) =
1
2

dD
2(t)

dt
, (B3)
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In a flow with a strong zonal mean, e.g. the ACC, it is often the case that D
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y , and thus559

KA ⇡ KA,x, and thus KA,y is more representative for eddy diffusivity (Klocker et al. 2012). It can be560

shown that KA(t) = s2 R t

0 R(t) dt , i.e. that the absolute diffusivity is proportional to the velocity561

variance and the integral of the velocity autocorrelation. At early times, when R(t) ⇡ 1, then562

KA(t) ⇡ s2
t, i.e. absolute diffusivity grows linearly with time (LaCasce 2008). At later times,563

when t >> TL, absolute diffusivity will approach a constant value (Sallée et al. 2013).564
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E(w) =
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of two initially paired particles,571
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A1 = 2S (4)

A2 =
DA1

Dt
+ ru

T
A1 + A1ru. (5)

The operator93

D/Dt = @t + u · r (6)

is the usual material derivative. The equations of motion for this system state that the acceleration of the94

fluid is equal to the divergence of the stress tensor,95

Du

Dt
=

1
⇢0

div�. (7)

Together with the additional thermodynamical constraints (Dunn and Fosdick, 1974)96

µ � 0, ↵1 + ↵2 = 0, ↵1 � 0, (8)

we will show that the momentum equations for second-grade fluids take the general form97

Dv

Dt
+ ru

T · v = � 1
⇢0
rP + ⌫r2

u + F

v =
⇣
1 � ↵r2

⌘
u (9)

↵ =
↵1

⇢0
.

The Lagrangian derivative in (9), and in all subsequent expressions, remains as defined in (6). Here we have98

introduced the kinematic viscosity, ⌫ = µ/⇢0, and a rescaled stress modulus, ↵, for brevity and assume that99

they are both constant and positive. P is a modified pressure whose exact form depends on whether one100

chooses to neglect terms in the nonlinear stress A2, which is the scenario explored by AZ. F represents101

extra terms that also appear in the momentum equations when terms in A2 are neglected, as will be shown102

in Sections 3.3 and 3.4. When no terms in A2 are neglected F = 0.103

A unique feature of (9) is the appearance of a second velocity, v, which is related to u by a Helmholtz104

operator. The interpretation of this velocity is a crucial di↵erence between second-grade fluids and LANS-105

↵. In the context of second-grade fluids it is appropriate to think of the nonlinear stress A2 as introducing106

several extra terms into the momentum equations that are dependent on the stress modulus ↵. Introducing v107

allows us to write these equations more succinctly but it is not physically meaningful in and of itself. LANS-108

↵ considers the advecting velocity u to be a filtered version of v, where the notion of filtering the velocity109

arises through the Lagrangian averaging procedure (Hecht et al., 2008a). The filter itself is represented by110

the Helmholtz operator relating u and v, and acts to suppress small-scale structures in v (Foias et al., 2001).111

This inspires alternative names for u and v as the smooth and rough velocity, respectively (e.g. Hecht et al.,112

2008a,b; Petersen et al., 2008).113

Excluding the viscous term, (9) is identical to the three-dimensional form of the Camassa-Holm equation114

(Camassa and Holm, 1993), also known as the Lagrangian-averaged Euler-↵ (LAE-↵) equations (Holm et al.,115

1998a,b; Bhat et al., 2005). The LAE-↵ interpretation of these equations has been arrived at from multiple116
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American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by
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where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
0.1 m; from Niiler et al. 2003) in
the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions
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vorticity forcing related to 

(both based on coarse-graining from 7.5km to 30km horizontal resolution)



Coefficient = length^2 

§ Scales only with the coarse resolution grid box size
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Spectral Transfer of Total Kinetic Energy
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