Modeling ocean-atmosphere coupled feedbacks over the tropical oceans

Charlotte A. DeMott

Department of Atmospheric Science, Colorado State University

Atmospheric Convection and Air-Sea Interactions over the Tropical Oceans Workshop, 7-9 May 2019, Boulder CO

photo: western Pacific from R/V Vickers, TOGA COARE (C. DeMott)

Modeling ocean-atmosphere coupled feedbacks over the tropical oceans: an MJO perspective

Charlotte A. DeMott

Department of Atmospheric Science, Colorado State University

Atmospheric Convection and Air-Sea Interactions over the Tropical Oceans Workshop, 7-9 May 2019, Boulder CO

photo: western Pacific from R/V Vickers, TOGA COARE (C. DeMott)

why the MJO?

- it's a nice "laboratory" for studying air-sea interactions not a land-sea breeze phenomenon not a shallow water (gravity) wave moisture is essential: surface fluxes, advection,
- - cloudiness, rainfall
- MJO convection affects and responds to oceanic processes on multiple scales

30N

30S

30N

30S

30N

30S

30N

<u>"active" phase:</u>

cloudy windy cooling/cold SSTs

<u>"suppressed" phase:</u>

fewer clouds calm warming/warm SSTs

- to present scales of ocean-atmosphere interactions important to the MJO
- to introduce model requirements for representing these processes

goals of this talk

to present scales of ocean-atmosphere interactions important to the MJO

to introduce model requirements for representing these processes

goals of this talk

to present scales of ocean-atmosphere interactions important to the MJO

to introduce model requirements for representing these processes

goals of this talk

coupled processes within the MJO

atmospheric forcing

coupled processes within the MJO

coupled processes within the MJO

- Ocean and atmosphere communicate via surface fluxes • AML and OML thermodynamic properties regulate the fluxes

- buoyancy flux:

 - buoyancy fluxes alter parcel density

• the combined flux of heat and moisture into a volume of air or water

• buoyancy flux:

- buoyancy fluxes alter parcel density

ocean

$$F_b \sim Q_{net} + (P - E)$$

the combined flux of heat and moisture into a volume of air or water

heating

moistening

 $Q_{net} = SW \downarrow + LW \uparrow + LH \uparrow + SH \uparrow$

• buoyancy flux:

- buoyancy fluxes alter parcel density

ocean

$$F_b \sim Q_{net} + (P - E)$$

$Q_{net} = SW \downarrow + LW \uparrow + LH \uparrow + SH \uparrow$

the combined flux of heat and moisture into a volume of air or water

atmosphere

$$F_b = SH + (0.61C_pT/L_v)LH$$

heating

moistening

 $Q_{net} \approx \underline{SW} \downarrow + \underline{LH} \uparrow$

 $Q_{net} \approx \underline{SW} \downarrow + \underline{LH} \uparrow$

 $Q_{net} \approx \underline{SW} \downarrow + \underline{LH} \uparrow$

 $Q_{net} \approx \underline{SW} \downarrow + \underline{LH} \uparrow$

the net effect on SST regulates the ocean feedback to the atmosphere

Hendon and Glick 1997

Rydbeck and Jensen 2017

seasonal

Rydbeck and Jensen 2017

interannual

McPhaden 2004

calm/suppressed

 $F_b \sim SH + 0.1LH$

calm/suppressed

 $F_b \sim SH + 0.1LH$

calm/suppressed

- diurnal convection
- SST gradient-driven convergence

 $F_b \sim SH + 0.1LH$

calm/suppressed

- diurnal convection
- SST gradient-driven convergence

disturbed/active

 $F_b \sim SH + 0.1LH$

calm/suppressed

- diurnal convection
- SST gradient-driven convergence

disturbed/active

calm/suppressed

• SST gradient-driven convergence

 $F_b \sim SH + 0.1LH$

disturbed/active

the interaction of convection with atmospheric humidity strongly modulates ocean feedbacks

 convection primarily regulated by largescale atmospheric circulations

convective moistening by rainfall rate

0.1-1 mm/day

3-5 mm/day

10+ mm/day

convective moistening by rainfall rate

0.1-1 mm/day

3-5 mm/day

- warm and cold SST anomalies shift the distribution of rainfall rates and the height of moistening/drying.
- in models, the convective response to SSTmodulated buoyancy fluxes is quite sensitive to cumulus parameterization.
- these processes affect tropical mean state moisture distributions.

10 + mm/day

model requirements for coupled processes

• ocean

- finely resolved upper ocean
- sub-daily coupling with atmosphere
- adequate horizontal resolution to simulate oceanic equatorial Rossby waves, equatorial jets
- atmosphere
 - realistic surface fluxes (mean state; variability)
 - "correct" convective initiation
 - "correct" sensitivity of convection to column humidity
 a better understanding of what "correct" looks like
 - a better understandir from observations

direct observations for constraining models

ocean

atmosphere

extra slides

uncoupled

weak mixing

strong mixing

coupled

SST cooling: fluxes vs dynamics

Halkides et al. (2015)

summary of MJO coupled processes

	Diurnal	Intraseasonal (fluxes)	Intraseasonal (momentum)	Seasonal	Interannual
key atmospheric conditions	calm winds low cloudiness	alternating periods of suppressed and active convection	multiple days of persistent easterly or westerly winds	multiple days of easterly (ER) or westerly (KW) winds	MJO in WPac, WWB
key ocean dependencies	reduced currents OML shoaling	regulated by surface currents, stratification	upper ocean stratification	reduced upper ocean stratification?	deep mixing or surface advection?
observational gaps	high-frequency stratification measurements	high-frequency AML humidity, ocean stratification	high vertical resolution stratification measurements		ocean stratificatior
model shortcomings	convection- humidity biases, ocean resolution, coupling frequency	convection- humidity biases (BL, free trop), ocean resolution, coupling frequency	MJO fidelity, ocean vertical resolution	coarse ocean horizontal resolution, insufficient study	MJO fidelity, WPac coupled processes?

