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Modeling ocean-atmosphere coupled feedbacks 
over the tropical oceans:

an MJO perspective



why the MJO?

• it’s a nice “laboratory” for studying air-sea interactions 
• not a land-sea breeze phenomenon 
• not a shallow water (gravity) wave 
• moisture is essential:  surface fluxes, advection, 

cloudiness, rainfall 

• MJO convection affects and responds to oceanic processes 
on multiple scales
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scale of the Madden-Julian oscillation
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goals of this talk

• to present scales of ocean-atmosphere interactions important to the MJO 

• to introduce model requirements for representing these processes 
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• Ocean and atmosphere communicate via surface fluxes

• AML and OML thermodynamic properties regulate the fluxes
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the buoyancy flux

Qnet = SW ↓ + LW ↑ + LH ↑ + SH ↑

• buoyancy flux:   
• the combined flux of heat and moisture into a volume of air or water 
• buoyancy fluxes alter parcel density

atmosphere

Fb = SH + (0.61CpT/Lv)LH
ocean

Fb ∼ Qnet + (P − E)

heating

moistening
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Qnet ≈ SW ↓ + LH ↑

calm/suppressed disturbed/active

OML

ocean

strong stability

water advection


SSH perturbationsweak stability

vertical mixing

ML deepening

P − E

the net effect on SST 
regulates the ocean 

feedback to the 
atmosphere
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• diurnal convection 
• SST gradient-driven convergence

• convection primarily regulated by large-
scale atmospheric circulations

the interaction of 
convection with 

atmospheric humidity 
strongly modulates ocean 

feedbacks
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3-5 mm/day0.1-1 mm/day 10+ mm/day

suppressed activetransition

convective moistening by rainfall rate

surface

100 hPa • warm and cold SST 
anomalies shift the 
distribution of rainfall rates 
and the height of 
moistening/drying.


• in models, the convective 
response to SST-
modulated buoyancy 
fluxes is quite sensitive to 
cumulus parameterization.


• these processes affect 
tropical mean state 
moisture distributions.



model requirements for coupled processes

•ocean 
• finely resolved upper ocean 
•sub-daily coupling with atmosphere 
•adequate horizontal resolution to simulate oceanic 

equatorial Rossby waves, equatorial jets

•atmosphere 
• realistic surface fluxes (mean state; variability) 
• “correct” convective initiation 
• “correct” sensitivity of convection to column humidity 
•a better understanding of what “correct” looks like 

from observations



direct observations for constraining models

ocean atmosphere
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uncoupled coupled

weak mixing
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fluxes 
dominate

dynamics 
dominate

Halkides et al. (2015)

SST cooling:  fluxes vs dynamics



summary of MJO coupled processes

Diurnal Intraseasonal 
(fluxes)

Intraseasonal 
(momentum) Seasonal Interannual

key atmospheric 
conditions

calm winds 
low cloudiness

alternating periods 
of suppressed and 
active convection

multiple days of 
persistent easterly 
or westerly winds

multiple days of 
easterly (ER) or 
westerly (KW) 

winds

MJO in WPac, 
WWB

key ocean 
dependencies

reduced currents 
OML shoaling

regulated by 
surface currents, 

stratification

upper ocean 
stratification

reduced  
upper ocean 

stratification?

deep mixing or 
surface advection?

observational gaps
high-frequency 
stratification 

measurements

high-frequency  
AML humidity, 

ocean stratification

high vertical 
resolution 

stratification 
measurements

ocean stratification
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shortcomings

convection-
humidity biases, 
ocean resolution, 

coupling frequency

convection-
humidity biases 
(BL, free trop), 

ocean resolution, 
coupling frequency

MJO fidelity, 
ocean vertical 

resolution

coarse ocean 
horizontal 
resolution, 

insufficient study

MJO fidelity, 
WPac coupled 

processes?


