Georgia Tech

CREATING THE NEXT

Smart Sea Level Sensors in Savannah & Chatham County

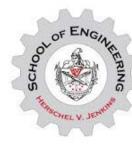
Dr. Kim Cobb Director, Global Change Program Georgia Power Chair Earth & Atmos. Sciences

Nick Deffley Director, Office of Sustainability City of Savannah

Dr. Russell Clark Senior Research Scientist Computer Science

Randall Matthews Chatham County Emergency Management Agency

SAVANNAH savannahga.gov


The project team

<u>Nick Deffley</u> Tom McDonald David Donnelly

Lara Hall

Tom Maty Grace Herrington

<u>Dr. Kim Cobb</u> <u>Dr. Russ Clark*</u> Dr. David Frost Dr. Emanuele Di Lorenzo Dr. Alex Robel Dr. Sally Ng Dr. Iris Tien Lalith Polepeddi Jayma Koval Tim Cone* Selena Perrin

*GT-Savannah

<u>Randall Mathews</u> Leon Davenport Dennis Jones David Anderson

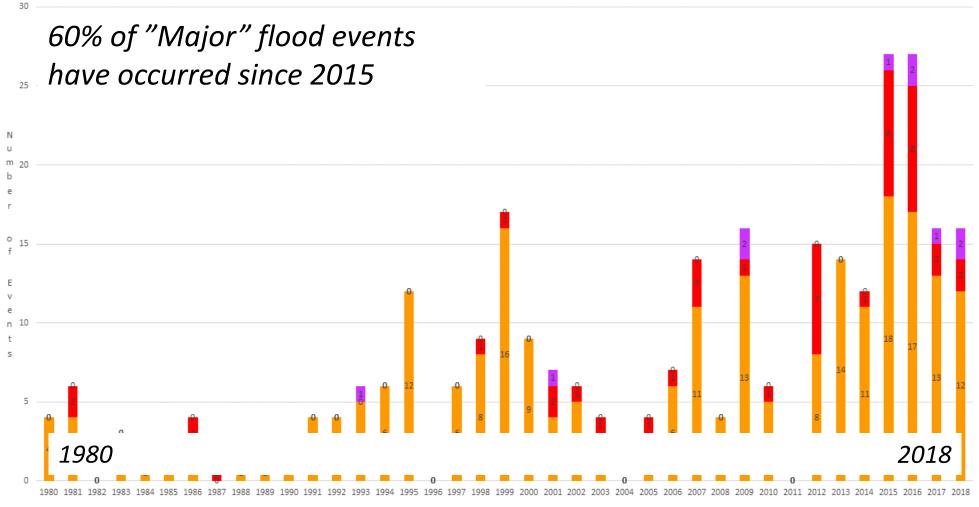
Skidaway Institute of Oceanography UNIVERSITY OF GEORGIA

Dr. Clark Alexander Dr. Marc Frischer

Rebecca Greenbush

Coastal flooding – a current threat

HURRICANE STORM SURGE INUNDATION MAP: CHATHAM COUNTY, GEORGIA Savannah


Categories 1 & 2 Hurricanes Categories 3 Hurricanes Categories 4 & 5 Hurricanes

EMERGENCY MANAGEMENT CHATHAM COUNTY

https://www.chathamemergency.org/storm-surge-impact-by-category.php

Sea level rise on the Georgia coast

Fort Pulaski, GA Coastal Flood Events by Category

Minor (9.20 - 9.59) Moderate (9.60 - 9.99) Major (10.00 +)

Source: NWS Charleston

flooding frequency and intensity rising

"Sunny day flooding"

Nov 24, 2018

currently:

12 sensors 10 gateways

<u>goal</u>: 50 sensors by August

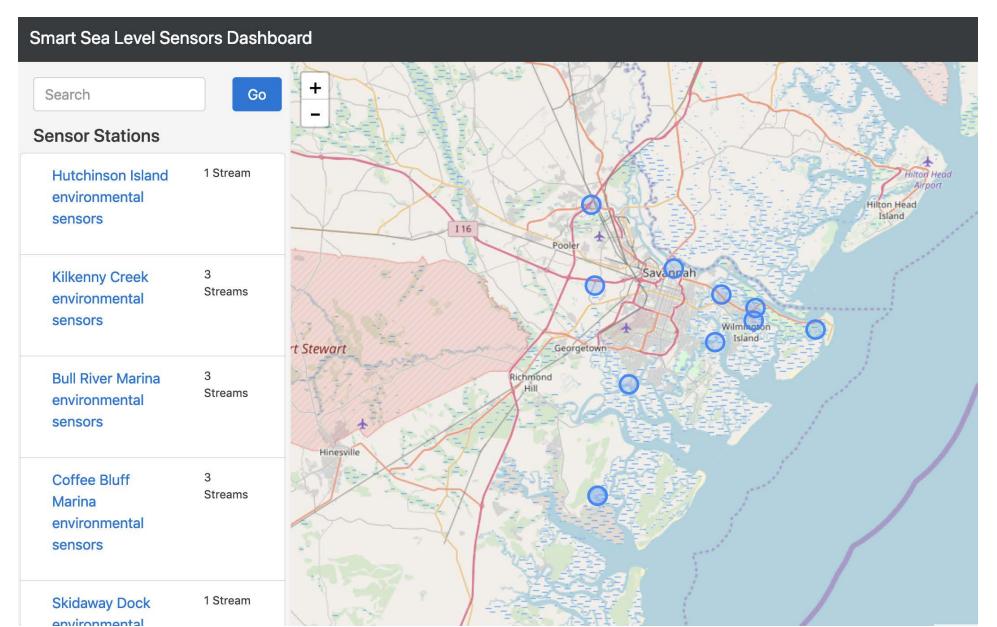
gateway device:

- 1 to 4 mile range
- can serve hundreds of

sensors

- needs internet, power

goal:


provide backbone for diverse 'internet of things' applications

benefits of GT-designed sensor: high precision (1mm) long battery life (3-5yrs) low cost (<\$300 components)</pre>

Dashboard demonstration

Lead: Dr. Emanuele Di Lorenzo Director, Ocean Science & Engineering Earth & Atmospheric Sciences

FROM THE OPEN OCEAN TO THE URBAN SCALE: A MODELING SYSTEM FOR SAVANNAH CITY AND THE GEORGIA COAST

Savannah Profile

Population

City: 145,000, Metropolitan area: 300,000 64% minority, 55% African American

Socio Economic

Median household income: \$54K

Vulnerable census tracts: \$12 – 18K (disproportionately African American)

Unemployment: 6%

Vulnerable census tracts: 10 – 20%

Poverty rate: 25% for over 30 years

Vulnerable census tracts: over 60%

Project goals

emergency planning & response

real-time data portal & toolkits, neighborhood-level emergency response plans

short and long-term risk assessment and resilience planning

develop & test educational resources

middle school & high school curricula

community engagement and building awareness (EJ lens)

equitable access to information, needs assessments, graphical representations of data, citizen science opportunities, public events, installations, resilience planning

Educational partnerships

Jenkins High School – assembling sensors

Oglethorpe Middle School – sea level curriculum development

Community engagement

Brunswick workshop on sea level rise Jan 22, 300 attendees

Public forum every 2 months at on-site project workshops

Adopt-a-Sensor program

Partnership with Harambee House for Environmental Justice

Georgia Tech student intern

Augmented reality

Mobile app that visualizes flood risk scenarios

Flood risk

Cat 2

Cat 1

Adjust the slider to visualize flood risk at your location

Cat 3

Cat 4

Cat 5

Lessons learned..

There is much to learn from on-going efforts across the country

Overwhelming interest in project from students, residents, key stakeholders, policymakers

New data opens new channels and methods of communication with community about risk and resilience

Next steps

Robust web-based portal and public data: grab data in one click (DONE)

Roadmap for municipalities, using the data to inform policy, infrastructure planning & investment, community development, and resilience implementation

Develop a process and set of tools for engaging underserved communities and communicating the impact of the data in ways that are relevant to them

Additional sensor applications: seawater properties, air quality, inland flooding, etc.

Broader desires

Scalable framework that can be tailored to other coastal communities for sensor deployment & community engagement

Collaborative data, modeling and engagement sharing among municipalities and regions along the eastern seaboard

Develop best practices and accelerate adaptation and resilience efforts

Questions?

http://sealevelsensors.org