Perspectives from GATE, TOGA- COARE, and DYNAMO

Robert Houze University of Washington and PNNL

Atmospheric Convection & Air-Sea Interactions over Tropical Oceans Workshop Boulder, June 7, 2019

18th Century "Digesting Duck" of Jacques de Vaucanson, aka "Descartes Duck"

SCIENTIFIC REDUCTIONISM

SCIENTIFIC REDUCTIONISM is an approach to understanding the nature of <u>complex things</u> by <u>reducing</u> them to the interactions of their parts or to <u>simpler</u> or more fundamental entities

HOLISM (from Greek word meaning *all, whole, entire, total*), is the idea that <u>natural systems</u> (physical, biological, chemical, social, economical etc.) and their properties, should be viewed as wholes, not as collections of parts.

HOLISM has lead to "<u>systems thinking</u>" and its derivatives, like the sciences of <u>chaos and complexity</u>. Systems in biology, psychology, or sociology are frequently so complex that their behavior is, or appears to be, <u>"new"</u> or "<u>emergent</u>": it cannot be deduced from the properties of the elements alone.

My point:

Reductionism was practiced in GATE, TOGA-COARE, and DYNAMO

By topic

- Convection
- Boundary layers
- Fluxes at sea surface
- Oceanography

and/or

By platform

- Soundings
- Radar
- Ships
- Aircraft

Bulletin American Meteorological Society Vol. 55, No. 7, July 1974

······	
CATE	International and Scientific Management
UAIE	Group for GATE
	Bracknell, U.K. and Geneva, Switzerland
	World Meteorological Organization
final international scientific plans	

Contents

General description and central program of GATE, J. P. Kuettner	712
The synoptic-scale subprogram, D. E. Parker	720
The convection subprogram, D. R. Rodenhuis	724
The boundary-layer subprogram for GATE, H. Hoeber	731
The radiation subprogram of GATE, H. Kraus	734
The oceanographic subprogram of GATE, S. G. H. Philander	738

Bulletin American Meteorological Society Vol. 55, No. 7, July 1974

GATE	International and Scientific Management Group for GATE
	Bracknell, U.K. and Geneva, Switzerland World Meteorological Organization
	Wond Meteorological Organization
final international scientific plans	

Contents

General description and central program of GATE, J. P. Kuettner	
The synoptic-scale subprogram, D. E. Parker	720
The convection subprogram, D. R. Rodenhuis	724
The boundary-layer subprogram for GATE, H. Hoeber	731
The radiation subprogram of GATE, H. Kraus	734
The oceanographic subprogram of GATE, S. G. H. Philander	738

Bulletin American Meteorological Society Vol. 73, No. 9, September 1992

TOGA COARE

Peter

Webster

Roger Lukas

"Strategy"

- <u>An interface component</u>, in which the major emphasis will be the measurement and modeling of the interfacial fluxes between the atmosphere and the ocean over a wide variety of atmospheric and oceanic conditions.
- <u>An atmospheric component</u>, where the emphasis is on the measurement and modeling of those processes that determine the state of the atmospheric boundary layer, and, thus, influence the interfacial fluxes of heat, water, and momentum. It is anticipated that there will be observations taken over a full extent of weather conditions, ranging from the undisturbed trade-wind boundary layer to the disturbed boundary layer within a convective complexes.
- <u>An oceanographic component</u>, where the emphasis is on the measurement and modeling of the response of the upper ocean in order to assess the response to the varying fluxes at the interface that occur over the range of weather events and types encountered in the warm pools of the tropical oceans.

BATS DECEMBER 2013

Kunio Yoneyama

Chidong Zhang

Chuck Long

sondes (i)

- two quadrilateral sounding arrays for adequate atmospheric budget estimates, embedded in a broad sounding network from East Africa to the Maritime Continent within 20°S and 20°N;
- (ii) multiple radars of different wavelength to sample the full spectrum of cloud population during all stages of MJO initiation;
- (iii) simultaneous and continuous observations of atmospheric and upper-ocean profiles to measure coherent and coupled air-sea variability at time scales from turbulence to the MJO;
 - (iv) identical twin sites in the IO (Addu Atoll) and western Pacific (Manus Island) to sample the same MJO event at its initiation and mature stages; and

<u>Question</u>:

What do we really *not* understand about convection forming over the tropical ocean?

<u>Question</u>:

What do we really *not* understand about convection forming over the tropical ocean?

My answer:

How we get from no convection to non-precipitating convection, to deeper precipitating convection, to mesoscale organization

<u>Question</u>:

What do we really *not* understand about convection forming over the tropical ocean?

My answer:

How we get from no convection to non-precipitating convection, to deeper precipitating convection, to mesoscale organization

My premise:

Reductionism is preventing us from reaching understanding of the interactive processes.

Tropical Oceanic Cloud Population

Idealized Oceanic Tropical Cloud Population

Houze et al. (1980)

Idealized Oceanic Tropical Cloud Population

Idealized Oceanic Tropical Cloud Population

GATE

GATE Shipboard Radars 3D Reflectivity structures, but without Doppler or dual-polarimetric capability

GATE Shipboard Acoustic Sounders Detected Boundary Layer Turbulent Plumes

TOGA COARE

TOGA COARE Flights

Small cumulus flights

Large convection flights

Measured boundary layer properties

Measured air motions and radar reflectivity

TOGA COARE Shallow Convection Flights

Raymond (1995)

Analyzed and interpreted theoretically the aircraft data from the class 1 flights

- Convection can only occur when the boundary layer θ_e exceeds a threshold
- Surface fluxes increase θ_e
- Downdrafts decrease θ_e
- Boundary layer equilibration takes about a day
- Convection not controlled by lowlevel convergence

TOGA COARE Deep Convection Flights

Note in 18 years since GATE, technology had advanced

<u>Doppler</u> radar technology over land had been showing how air overturns in the big MCSs

By 1992, Doppler radars had shown this structure in squall lines over land

Houze et al. 1989

TOGA COARE <u>airborne Doppler radars</u> showed similar mesoscale circulation...but in 3D

Kingsmill and Houze 1999

<u>Note</u>:

The TOGA CORE shallow cloud and deep cloud studies were carried out separately and never integrated with each other (reductionism)

Results from DYNAMO

In the 18 years following TOGA COARE, there were further advances in instrument technology

GATE—reflectivity

• 3D precipitation structure

TOGA COARE—reflectivity, Doppler

- 3D precipitation structure
- Mesoscale air motions

DYNAMO—reflectivity, Doppler, dual-polarization, power

- 3D precipitation structure
- Mesoscale air motions
- Cloud microphysics
- Non-precipitating clouds
- Boundary layer structure

Leary and Houze 1979analyzing GATE shipboard radar and drop size data <u>inferred</u>

Leary and Houze 1979analyzing GATE shipboard radar and drop size data <u>inferred</u>

Barnes and Houze 2014 analyzed DYNAMO dual-polarization radar data

\rightarrow <u>confirmed</u> GATE results of Leary and Houze 1979

\rightarrow and also the air motion results of TOGA COARE

Barnes and Houze 2014)

Later in the day, one cloud forms a rain shower Non precipitating cumulus In DYNAMO 4 Nov 2011

Brute Power in DYNAMO \rightarrow <u>non-precipitating clouds</u>

Rainshower

Hypothesized sequence of Rowe and Houze 2015

Lessons from GATE, TOGA COARE & DYNAMO

Need more holism less reductionism!

•First identify processes that need to be understood

 Coordinate <u>all</u> resources on those processes in a singular plan

 Make maximum use of technological advances as platform availability decreases

•Use remote sensors to map processes holistically

Good Luck!

Good Luck!