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The ocean mixed layer (depth)
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Mixed layer:
the well-mixed, homogeneous near-
surface layer of the ocean.

Mixed-layer depth:

controls the impact of air-sea fluxes
(heat, momentum, material) on the

ocean — and hence on feedbacks to
the atmosphere



The mixed layer is critical for air-sea interaction
particularly in the tropics, where warm SSTs drive atmospheric
convection so small SST anomalies matter
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(Here we focus on convection, but MLD also matters
for energy budgets, biogeochemistry, gas flux...)



Drivers of mixed-layer depth (MLD) variability I: Surface forcing
dominate at diurnal, seasonal, interannual timescales;
well predicted by 1-d ocean models
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Drivers of MLD variability Il: Ocean dynamics (3-dimensional)
Important on multiple time/space scales

Planetary waves
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* Frontal advection / tilting / subduction >
* Ekman pumping
* Internal / planetary waves

* Small-scale processes, e.g.
e Submesoscale (1-10km) fronts = instabilities = restratification
 Langmuir circulation (strong vertical velocities)

Cronin & McPhaden 2002 Girishkumar et al. 2011



Salinity stratification can cause a shallower mixed layer
— and a “barrier layer” beneath the ML
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The presence of a barrier layer affects air-sea interaction
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Barrier layer: temperature inversions possible
— warm water below the ML can later be released to the atmosphere

Mixed layer deepening doesn’t cause entrainment cooling
Deeper ocean isolated from the atmosphere

Mahadevan et al. 2016: ASIRI data



Key questions

How much does MLD variability affect SST and atmospheric
convection?

What time & space (horizontal and vertical) scales need to be
resolved in observations and models to capture relevant MLD

variations?

Where/when is MLD variability 1-dimensional? When are 3-d
ocean dynamics important?



Short timescales:
diurnal warming and/or rain cause stable near-surface layers

These are thin (1-10m), mixed away within ~hours
Their importance has not been well quantified

S ———— - m——\\ind sneed:
<100
.E Rain rate 2-4.m/s
£ 10 (b) 4-6 m/s
(14
Y f S—
0]L ' u v N+
Eol = f ¥
En. TN
“stable §'2°' =

- 1
--------- , — RL
N ~

layer
depth” 0 3 6 9 12 1
Sunrise Time (UTC)
Thompson et al. 2019: DYNAMO data




Rectification of the diurnal cycle onto longer timescales
Diurnal variability improves MJO representation
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Cumulative impacts of diurnal
warm layers (DWLs) amplify the
MJO SST anomalies

Models including a diurnal cycle:
* Larger, better diurnal heat fluxes

e Better diurnal convection
e Better MJO forecast skill

Similarly, models with diurnal
coupling better simulate ENSO

Seo et al. 2014



Barrier layer at the edge of the western Pacific warm pool:

Intraseasonal to interannual variations matter for ENSO
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bursts e

Thick BL associated with
El Nifo onset (Maes et al

2002)

deep
convection

SW penetration

~—— Equatorial Trade Winds

= Front

cool

Barrier to entrainment of
thermocline water

Correctly modeling the
location/thickness of the barrier
layer is critical for getting coupled

air-sea processes right —

After Brown et al 2015
from Billy Kessler




Current state of MLD measurements in the observing system

Argo floats: great vertical resolution to capture MLD
* Time/space sampling: good for >seasonal timescales

* inadequate temporal sampling on faster/smaller timescales (intraseasonal,
diurnal, episodic, submesoscale)

Moorings: good time resolution
(but large horizontal scales only)
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(poor vertical resolution)

Highly instrumented
flux moorings (e.g.,
ASIRI, SPURS-2)
capture MLD well
but are $$$ (good

for process studies)
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Prawler moorings: high
resolution, lower cost,
higher risk



Some ways forward

Improving observations
* Capture diurnal, intraseasonal, S2S MLD variability in key regions

Improving understanding of where/when/why MLD variability
matters
* E.g. with model sensitivity studies, observational process studies

« Emerging: importance of the submesoscale; 3-d ocean dynamics;
episodic/small-scale features

« Will allow us to focus future efforts, and where existing MLDs are
adequate
Improving observing technology

* Profilers on autonomous vehicles (Wave gliders or Saildrones with
winches?)

* Exploiting acoustics to capture MLD

Improving parameterizations of MLD & representation of MLD in
data assimilating models

* Small/fast scales still tricky



