

Arctic Ocean satellite observing system

Tom Armitage

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

Principles of satellite remote sensing

Photo: Apollo 8

Principles of satellite remote sensing

Wavelength

Principles of satellite remote sensing

August 6, 2019

Passive systems: Measure emissions from the Earth at different wavelengths - e.g., visible imagery

Remote sensing of the Arctic Ocean

- Polar regions are difficult to observe:
 - Harsh climate
 - Expensive to operate
 - Specialized equipment
- Remote sensing has high valueadded in polar regions
 - Extensive coverage
 - Frequent repeat
- Highly complimentary to in situ measurements

Remote sensing of sea ice

Sea ice extent & concentration

Images: Sea ice Denmark (http://www.seaice.dk/)

- Retrieved from passive microwave observations
- Sea ice has high contrast with open water

Sea ice extent & concentration

Data: National Snow and Ice Data Center

 Daily observations since 1978!

Sea ice extent & concentration

- Arctic sea ice extent is one of the most important climate datasets
 - See the imprint of climate change
 - Have seen the emergence of Arctic amplification

August 6, 2019 US CLIVAR Summit 2019 10 jpl.nasa.gov

Sea ice motion

- Use repeat imagery (passive microwave or radar) to track parcels of ice
 - Passive microwave: lowresolution, daily since 1978
 - Radar: high-resolution, sporadic coverage

Separation: ± ~1 day

Sea ice motion

- Motion driven by wind
- See areas of convergence and divergence
 - Drives sea ice deformation
- Sea ice has weakened and sped up in recent decades

Sea ice age

- By tracking ice parcels over many years can determine ice age
- In the 1980s the Arctic was full of old ice (5+ years)
- Today it is nearly all gone

Sea ice thickness

- Important for climate:
 - Total ice volume, heat & freshwater fluxes, ice strength
- Two measurement techniques

Sea ice thickness

- Altimetry
 - Relative error is small for thicker sea ice (>1m)
- Passive microwave
 - Relative error is small for thinner sea ice (<0.5m)
- Combined data gives better picture of the full ice thickness distribution

Image: Ricker et al. (2017), The Cryosphere, DOI: 10.5194/tc-11-1607-2017

Sea ice thickness

- Typical sea ice thickness distribution in winter
 - Driven by ice convergence along Greenland/Canada

ICESat-2 (2018—)

- Lidar altimetry
- High resolution sea ice thickness and sea level measurements

August 6, 2019 US CLIVAR Summit 2019

Remote sensing of the Arctic Ocean

Altimeters are adept at measuring sea level in the open ocean

Get sea level 'under' the sea ice using specialized processing

- Sea level is related to upper ocean currents
 - Currents proportional to sea level slope

Gravimetry

- GRACE has been 'weighing' the ocean since 2002
- Globally reflects increased sea level due to increased terrestrial water input
- Locally reflects (barotropic) redistribution by wind
- Reveals Arctic Ocean response to climate variability (Arctic Oscillation)

Sea surface salinity

- SSS drives ocean density changes in the Arctic Ocean
 - Gradients drive circulation & mixing
 - Salinity maintains Arctic stratification
- Important biogeochemical tracer
- Linked to freshwater cycle

Sea surface salinity

- Monitored globally by L-band passive microwave emissions
- Higher uncertainty in polar oceans due to:
 - Lower sensitivity at cold temperatures
 - Narrow bandwidth
 - Less in situ validation data
- Future missions may address these issues

Sea surface temperature

- Important for air-sea fluxes
 - Heat
 - Moisture
 - Momentum
 - $-CO_2$
- In Arctic can monitor intrusion of warm Atlantic/Pacific/river water
- Monitored by infrared and passive microwave instruments

Image: Polar Portal (www.polarportal.dk)

Sea surface temperature

- Important for air-sea fluxes
 - Heat
 - Moisture
 - Momentum
 - $-CO_2$
- In Arctic can monitor intrusion of warm Atlantic/Pacific/river water
- Monitored by infrared and passive microwave instruments

Upcoming & proposed missions

SWOT (launch 2021)

- NASA-JPL/French & UK Space Agencies
- Swath altimetry
 - 2-D ice thickness, sea
 level & currents

Surface Water Ocean Topography

2018 2020 2025 2030

NISAR (launch 2021)

- NASA-JPL/Indian Space Agency
- Radar imager
 - Daily sea ice velocity

NISAR

2018 2020 2025 2030

Sentinel-1 (ongoing)

- EC Copernicus mission
- Radar imager
 - Daily sea ice velocity

Sentinel-1C

Sentinel-1B

Sentinel-1A

2018 2020 2025 2030

August 6, 2019 US CLIVAR Summit 2019 31 jpl.nasa.gov

Sentinel-3 (ongoing)

- EC Copernicus mission
- Radar altimeter
 - Sea ice thickness, sea
 level and currents

2018 2020

2025

2030

Proposed missions

CIMR (launch 2025+)

- EC Copernicus mission
- Passive microwave imager
 - Ice concentration
 - Sea surface salinity
 - Sea surface temperature
 - Sea ice motion
 - Surface vector wind

CRISTAL (launch 2025+)

- EC Copernicus mission
- Radar altimetry
 - Sea ice thickness
 - Snow depth
 - Sea level
 - Ocean currents

Observational limitations and gaps

	lce conc. & extent	Ice motion & age	Ice thickness	Sea level & mass	SSS	SST
Outlook & potential gaps	 Potential break in SSM/I record 	PM: low resolutionSAR: infrequent coverage	 Mid-range uncertainty Snow cover High-latitude coverage after CS2/IS2 	High-latitude coverage after CS2/IS2GRACE resolution	Lack sensitivity at high- latitudesBandwidth	Potential break in SSM/I record
Future missions	CIMR	CIMR/RCM/S entinel- 1/NISAR	CRISTAL/ Sentinel- 3/CIMR/SWOT	CRISTAL/SWOT	CIMR	CIMR

August 6, 2019 US CLIVAR Summit 2019 34 jpl.nasa.gov

Conclusions

- Earth observing satellites provide massive value-added for Arctic science:
 - They are <u>essential</u> for our large-scale understanding of high latitudes
 - They are highly compliment in situ and other observations
- Regular basin-scale observations of important climate variables:
 - Sea ice concentration, thickness, motion, age; sea level, salinity, temperature
- The future of Arctic satellite observations is bright
 - Upcoming NASA missions will enhance capabilities
 - EC Copernicus program will sustain observations into 2030s and beyond

Arctic Ocean satellite observing system

Tom Armitage

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

