The influence of internal variability on synoptically-driven haze in Beijing

Christopher W. Callahan^{1,2} Justin S. Mankin^{1,2,3}

¹Program in Ecology, Evolution, Ecosystems, and Society, Dartmouth College ²Department of Geography, Dartmouth College ³Ocean and Climate Physics, LDEO

Poor air quality and its costs

Wu Wei/Xinhua, 2015

Poor air quality and its costs

Wu Wei/Xinhua, 2015

Poor air quality and its costs

Respiratory disease, cardiovascular problems, organ damage, and more

Crop declines and economic damage

Wu Wei/Xinhua, 2015

Poor air quality = emissions + meteorology

Poor air quality = emissions + meteorology

("haze")

Weather conditions conducive to Beijing severe haze more frequent under climate change

Wenju Cai^{1,2}, Ke Li^{3,4}, Hong Liao⁵*, Huijun Wang⁶ and Lixin Wu¹

Arctic sea ice, Eurasia snow, and extreme winter haze in China

Yufei Zou, Yuhang Wang,* Yuzhong Zhang, Ja-Ho Koo[†]

Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends

Lin Pei^{1,*}, Zhongwei Yan^{2,*}, Zhaobin Sun¹, Shiguang Miao¹, and Yao Yao²

Insignificant effect of climate change on winter haze pollution in Beijing

Lu Shen¹, Daniel J. Jacob¹, Loretta J. Mickley¹, Yuxuan Wang^{2,3}, and Qiang Zhang³

Given the ongoing debate over climate change effects on Beijing haze...

Given the ongoing debate over climate change effects on Beijing haze...

...and the widespread use of CMIP5 simulations in these studies...

Given the ongoing debate over climate change effects on Beijing haze...

...and the widespread use of CMIP5 simulations in these studies...

What role does internal variability play in modeling climate-air quality connections in Beijing?

Data

- IGRA radiosonde meteorology data (2010-2016)
- Beijing embassy PM_{2.5} data (2010-2016)
- R2 reanalysis geopotential height data (1979-2016)
- CESM-LE (35) and CMIP5 (10) simulations (1979-2100)

All analysis done in winter (DJF) only

1. Increase in atmospheric stability: **ELR**

2. Weakening of cold, dry northwesterlies: **V850**

1. Increase in atmospheric stability: **ELR**

2. Weakening of cold, dry northwesterlies: **V850**

- 1. Increase in atmospheric stability: **ELR**
- 2. Weakening of cold, dry northwesterlies: **V850**
- 3. Increase in humidity (hydroscopic formation): **Q**

1. ELR: Anticyclonic circulation = subsidence inversions

ELR: Anticyclonic circulation = subsidence inversions
V850: Weak Siberian High reduces NW winds

ELR: Anticyclonic circulation = subsidence inversions
V850: Weak Siberian High reduces NW winds
Q: Reduced NW winds allow humidity buildup

Attribution of Anthropogenic Influence on Atmospheric Patterns Conducive to Recent Most Severe Haze Over Eastern China

Ke Li¹ 厄, Hong Liao^{1,2} 厄, Wenju Cai^{3,4} 厄, and Yang Yang⁵ 厄

Multi-Index Attribution of Extreme Winter Air Quality in Beijing, China

Christopher W. Callahan^{1,2} , Jordan L. Schnell³, and Daniel E. Horton³

• **Circulation** accounts for haze and haze-favorable conditions

- Circulation accounts for haze and haze-favorable conditions
- Small forced increase in anticyclonic circulation

- Circulation accounts for haze and haze-favorable conditions
- Small forced increase in anticyclonic circulation
- Internal variability plays a significant role

- Circulation accounts for haze and haze-favorable conditions
- Small forced increase in anticyclonic circulation
- Internal variability plays a significant role
 - 1. Baseline occurrence of anticyclonic patterns

- Circulation accounts for haze and haze-favorable conditions
- Small forced increase in anticyclonic circulation
- Internal variability plays a significant role
 - 1. Baseline occurrence of anticyclonic patterns
 - 2. Future pathways of pattern occurrence

- Circulation accounts for haze and haze-favorable conditions
- Small forced increase in anticyclonic circulation
- Internal variability plays a significant role
 - 1. Baseline occurrence of anticyclonic patterns
 - 2. Future pathways of pattern occurrence

