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Summary of UQ activities
● With all the data that has been gathered over the past decades 

enhancing our knowledge of Earth and the universe, three new 
classes of high-stake decision making processes have emerged:
● What to observe next that we don’t already know?
● How do we make sure that the observation solves the science 

question?
● How robust are decisions based on the new data?

• Solution: Better quantitative characterization of these complex 
systems through the application of system engineering and 
uncertainty quantification methods would enable:
• Improved science analysis and applications results
• Improved science traceability for optimizing measurement 

system (mission and instruments) design
• Improved prioritization of missions and instruments
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Summary of JPL activities

● Observing System Simulator Capabilities (building on existing 
‘models’ of the state of knowledge)

● Training in UQ for STMs/proposal
● Team of UQ experts that helps teams with traceability (e.g. FINESSE, 

InSight, …)
● Guidelines in Playbook
● (Science) CML entry/exit criteria (Foundry)
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Example: UQ in evapotranspiration

● ECOSTRESS is a thermal radiometer on the ISS that monitors plant 
stress by measuring small changes in temperature.

● ECOSTRESS produces a standard L3 product for Evapotranspiration 
(ET).

● Two ET models are used – here we focus on disALEXI (developed by 
USDA)
● Takes 14 inputs, including meteorological data, vegetation 

information, and LST from ECOSTRESS
● Currently, uncertainty is estimated as a standard deviation of model 

runs (PT-JPL), or scaled LST uncertainty (disALEXI)
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By treating the entire field at once, spatial and between-variable 
dependence structures are maintained in the ensemble. 
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Input comparison

Original LST Noisy LST Simulated LST

Draw from i.i.d. 
distribution
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Sensitivity illustration

With simulated LST as input With i.i.d. noisy LST as input
(pessimistic by 15%) 
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Mean = 0.0985
Std = 0.5724

Mean = 0.0974
Std = 0.4957



Output comparison

Original ET ET model with noisy input ET model output 2



Results

Predicted – Observed as proportion Predicted – Observed as proportion
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Mean = 0.0176
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Accuracy per pixel
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Summary
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• Accuracy and precision are not useful concepts for ET!
•What is the proper metric for ET uncertainty?
•What should we be reporting, and to whom?
• How should we formulate requirements for future missions (e.g. SBG) if 

“accuracy” isn’t a useful concept?
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