Observations of Air-Sea Interactions over the Tropical Oceans

James Edson Woods Hole Oceanographic Institution

Research supported by grants from the ONR, NSF, NOAA and NASA

CLIVAR Workshop

May 7, 2019

Workshop Goals & Outline

To identify key scientific problems that could be tackled through coordinated modeling and observational efforts and potentially motivate future process studies involving the tropical convection and air-sea interaction communities.

- Recent progress Direct covariance momentum, heat and moisture fluxes from moving platforms.
- Lesson learned Latent heat fluxes from buoys
- New approaches Flow distortion reduction on ships.
- Dalton and Stanton numbers from ships and buoys.
- An example Parameterizations versus state variables.
- High wind processes in the tropics
- Future Plans

Direct measurement of momentum, heat and moisture exchange (fluxes) in the marine surface layer

- Momentum Flux: $\tau_o = \rho_a \overline{uw}$ $= \rho_a C_D S_r \Delta U$ Sensible Heat Flux: $Q_H = \rho_a c_p \overline{wT}$ $= \rho_a c_p C_H S_r \Delta \Theta$ Latent Heat Flux: $Q_E = \rho_a L_v \overline{wq}$ $= \rho_a L_v C_E S_r \Delta Q$
- Drag Coefficient Stanton Number Dalton Number

1992 TOGA COARE 2017 NASA SPURS

Air-Sea Interaction Spar (ASIS)

CLIMODE

Year long

SPURS Latent Heat Flux

OOI & TPOS Real-time Fluxes

Air-Sea Interaction Field Studies

$$\overline{5}$$

Heat Fluxes

$$Q_{H} = \rho_{a}c_{p}\overline{wT} = \rho_{a}c_{p}C_{H}S_{r}\Delta\Theta \quad \Longrightarrow \quad C_{HN} = -\frac{\overline{wT}}{\Delta\Theta\Delta U_{N}G} = C_{D}^{1/2} \left(\frac{\kappa}{\ln(\frac{z}{Z_{T}})}\right)$$

$$Q_{E} = \rho_{a}L_{v}\overline{wq} = \rho_{a}L_{v}C_{E}S_{r}\Delta Q \quad \Longrightarrow \quad C_{EN} = -\frac{\overline{wq}}{\Delta Q\Delta U_{N}G} = C_{D}^{1/2} \left(\frac{\kappa}{\ln(\frac{z}{Z_{q}})}\right)$$

$$z_{q} = z_{T} = f\left(\frac{z_{o}u_{*}}{v}\right)$$

Challenge: Latent Heat Flux from Buoys

SPURS-1

SPURS-2

Closed Path

Open Path

Ship-based Flux Systems

- DCFS.
- Open path hygrometers
- Closed path hygrometer
- Aspirated RH/T sensors
- Solar/IR sensors
- Optical rain gauge
- Self-siphoning rain gauge

Challenge: Reduce Flow Distortion

- Optimal placement of sensors based on wind tunnel results and high-resolution models.
- Empirical corrections for flow distortion on the means based on LIDAR and other measurements.
- New methodologies for reduced flow distortion such as
- Landwehr, S., N. O'Sullivan, and B. Ward, 2015: Direct flux measurements from mobile platforms at sea: Motion and airflow distortion corrections revisited. J. Atmos. Oceanic. Tech., 32, 1163-1178.
- Approximately half the flux bias have been removed on ships.

Combine Buoy & Ship Fluxes to Parameterize the Dalton & Stanton Numbers

Ship & Buoy-based Transfer Coefficients

Ship & Buoy-based Transfer Coefficients

$$C_{EN} = -\frac{\overline{wq}}{\Delta Q \Delta U_N G} = C_{DN}^{1/2} \left(\frac{\kappa}{\ln(z/z_{oq})} \right)$$

$$z_q = z_T = f\left(\frac{z_o u_*}{\nu}\right)$$

Parameterizations and State Variables

High Winds in the Tropics

Ship & Buoy-based Transfer Coefficients

Gustiness

• We have a pretty good handle on near surface gustiness in convective conditions.

 $\tau_o = \rho_a \overline{uw} = \rho_a C_D S_r \Delta U$

 $G = \frac{S_r}{\Delta U} = \frac{\overline{(U^2 + V^2)^{1/2}}}{\left(\overline{U}^2 + \overline{V}^2\right)^{1/2}} = f(w_*)$

- We have less confidence on how to account for gustiness above the surface layer.
- And even less confidence on how to parameterize "gustiness" caused by coherent structures such as roll vortices at higher wind speeds.

MBL/CBLAST/CLIMODE Drag Coefficients

COARE 3.5

Edson, James B., and Coauthors, 2013: On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr., **43**, 1589–1610.

MBL/CBLAST/CLIMODE/RASEX

Another Hockey Stick

Drag Coefficient at High Winds

Drag Coefficient at High Winds

Future Plans and Assets for the Tropics

A Growing Global Array

Real-time from Mobile Assets

Saildrone

X-Spar

Wave Glider

Global Stress from Satellites

Summary

- Marine physicists have made significant progress in recent decades in our ability to directly measure surface fluxes from research vessels, moored buoys and, most recently, mobile platfroms.
- These platforms utilize Direct Covariance Flux Systems (DCFS) to remove platform motion from the measured wind speeds to measure the flux directly.
- Over the past decade or so, researchers have begun to collect long time series, O(year), of momentum and buoyancy fluxes from surface moorings that experience less flow distortion over a wider range of conditions.
- This includes sensors to measure latent heat fluxes on research moorings and some mobile platforms
- Improved flow distortion correction on ships is improving flux accuracy and decreasing biases.
- The accuracy of the transfer coefficients continues to improve over a wind range of wind speeds.
- Understanding the relationship of the transfer coefficients to wave driven processes at low winds and their behavior at high to extreme winds remain major objectives.

Flow Distortion Corrected

Accurate parameterization of these fluxes under observed atmospheric stability, sea-state and wave-age

Momentum Flux: $\tau_o = \rho_a \overline{uw} \qquad = \rho_a C_D S_r \Delta U$ C_{D10N} x 1000 Buoy CBLAST MBL ASIS RASEX U_{10N} (m/s) 15 2.5 C_{D10N} X 1000 Average - COARE 3.5 ---- COARE 3.0 ---- L&P (1981) -0.5 ¹⁰ U_{10N} (m/s) 0.04 $\alpha = z_{o}^{rough}g/u_{*}^{2}$ 0.03 0.02 0.01 Average COARE 3.5 ---- COARE 3.0 -0.01 15 20 Ü_{10N} (m/s)

$$C_{DN} = \frac{\overline{uw}}{\Delta U_N^2 G} = \left(\frac{\kappa}{\ln\left(\frac{z}{z_0}\right)}\right)^2$$

Drag Coefficient

- Drag on the ocean surface is commonly parameterized in terms of the roughness length, z_o .
- Edson et al. (2013) parameterized z_o as a function of wind speed, • wave-age and wave-steepness dependent Charnock variabile.
- It hard to beat a wind-speed dependent form. ٠
- To first order, wind-waves of O(0.1-100 m) support the surface stress. ٠
- Longer waves and swell have a second order effect. ٠