Lamont-Doherty Earth Observatory Columbia University | Earth Institute

Large ensemble testbed Evaluating pCO₂ interpolation methods

Luke Gloege

Air-Sea CO₂ exchange

2 © 2017 Lamont-Doherty Earth Observator

Lamont-Doherty Earth Observatory Columbia University Earth Institute

Surface Ocean CO₂ Atlas

Global average (1982-2015)

280 300 320 340 360 380 400 420 440 pCO₂ (μatm)

Number of months with data

January 1989

280 300 320 340 360 380 400 420 440 pCO₂ (μatm)

January 2010

3 © 2017 Lamont-Doherty Earth Observatory

Lamont-Doherty Earth Observatory Columbia University Earth Institute

Models and data products mismatch

- Data products are more variable than models
- Different interpretation for evolution of ocean carbon sink
- Which is correct : models or data products?

© 2017 Lamont-Doherty Earth Observatory

Lamont-Doherty Earth Observatory Columbia University Farth Institute

Two-step neural network (SOM-FFN)

SOM : Self organizing map

FFN : feed-forward neural network

- 1. Climatological pCO₂, SSS, SST, and MLD
- 2. Data grouped using self organizing map

- Learns a non-linear relationship between global features and pCO₂
- Inputs are proxies for processes affecting ocean pCO₂

Landschützer et al. 2013, 2014, 2016

Comparing SOM-FFN and SOCAT

SOCATv2019 data

280 300 320 340 360 380 400 420 440 pCO₂ (μatm)

SOM-FFN product

Bakker et al. 2016 EESD; Sabine et al. 2013

Bias (global avg. 2.15 µatm)

Landschützer et al. 2013, 2014, 2016

Lamont-Doherty Earth Observatory Columbia University [Earth Institute]

6 © 2017 Lamont-Doherty Earth Observatory

How large ensembles can help

- Evaluate performance across different climate states
- 100 randomly selected ensemble members
 - CanESM2 (25)
 - CESM (25)
 - GFDL (25)
 - MPI (25)
- Each climate state is equally likely
- Only considering 1982-2015

CESM 002

x100 members

1. Sample model member as SOCAT monthly pCO₂ product

4. Statistically compare reconstructed pCO₂ to model truth. Each spatial point is temporally decomposed

2. Train, evaluate, test reconstruction method at sampled locations

3. Estimate monthly varying pCO₂ on global scale using trained model

x100 members

CESM 002

x100 members

1. Sample model member as SOCAT monthly pCO₂ product

4. Statistically compare reconstructed pCO₂ to model truth. Each spatial point is temporally decomposed

2. Train, evaluate, test reconstruction method at sampled locations

3. Estimate monthly varying pCO₂ on global scale using trained model

x100 members

CESM 002

x100 members

1. Sample model member as SOCAT monthly pCO₂ product

4. Statistically compare reconstructed pCO₂ to model truth. Each spatial point is temporally decomposed

2. Train, evaluate, test reconstruction method at sampled locations

3. Estimate monthly varying pCO₂ on global scale using trained model

x100 members

CESM 002

x100 members

1. Sample model member as SOCAT monthly pCO₂ product

4. Statistically compare reconstructed pCO_2 to model truth. Each spatial point is temporally decomposed

2. Train, evaluate, test reconstruction method at sampled locations

3. Estimate monthly varying pCO₂ on global scale using trained model

x100 members

CESM 002

x100 members

1. Sample model member as SOCAT monthly pCO₂ product

4. Statistically compare reconstructed pCO₂ to model truth. Each spatial point is temporally decomposed

2. Train, evaluate, test reconstruction method at sampled locations

3. Estimate monthly varying pCO₂ on global scale using trained model

x100 members

Temporal decomposition

Ensemble member

Reconstruction

Each location in each member and reconstruction decomposed into seasonal, decadal, and sub-decadal variability

Cleveland et al. (1990) Journal of official statistics.

Lamont-Doherty Earth Observatory COLUMBIA UNIVERSITY [EARTH INSTITUTE

Statistical metrics

Bias and number of observations Is the reconstruction offset from the model?

- Bias spatially varying but global average is low
- Less spread in bias in regions with more data
- Higher decadal correlation in regions with more data

Normalized standard deviation Does the reconstruction capture the model's variability?

- Overestimates decadal variability in Southern Ocean by about 12%
- Reconciles gap between models and SOM-FFN

Conclusions

performance dependent on data density

Global avg = $-0.44 \mu atm$

Bias is spatially heterogenous, but negligible on a global scale

Overestimation of decadal variability reconciles the discrepancy with models

This testbed serves a platform to develop and test new methodologies

Acknowledgements

Galen McKinley Columbia University / LDEO

Peter Landschützer Max Planck Institute for Meteorology

Nikki Lovenduski

University of Colorado

Keith Rodgers
IBS center for climate physics

Tatiana Ilyina Max Planck Institute for Meteorology

John Fyfe Environment and climate change Canada Amanda Fay Columbia University / LDEO

Steve Jones

University of Bergen

Christian Rödenbeck

Max Planck Institute for biogeochemistry

Thomas Frölicher Physics Institute, University of Bern Yohei Takano

Max Planck Institute for Meteorology

Sarah Schlunegger

Princeton University

Lamont-Doherty Earth Observatory Columbia University | Earth Institute

Take a picture to access the testbed

Testbed URL

figshare.com/s/4337ae68dccbcf34e14c

Email gloege@ldeo.columbia.edu

Extra slides

Correlation

Is the reconstruction in phase with the model?

- Higher correlations in sub-tropics
- Correlations are consistent across ensemble members

Calculate air-sea CO₂ exchange

- ERA-interim 6-hourly global atmospheric reanalysis used to estimate monthly varying wind-speed covariance
- Calculated air-sea CO₂ exchange following Landschützer et al. 2014

Weiss 1974, Wanninkhof 1992, Sweeney et al. 2007