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Air-Sea CO2 exchange
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Surface Ocean CO2 Atlas 
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Models and data products mismatch
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• Data products are more variable than models

• Different interpretation for evolution of ocean carbon sink

• Which is correct : models or data products?

Gruber, Landschützer, and Lovenduski (2019).

Decadal variability south of 35°S
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Two-step neural network
(SOM-FFN)
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SOM : Self organizing map FFN : feed-forward neural network

1. Climatological 
pCO2, SSS, SST, and MLD

2. Data grouped using self 
organizing map

• Learns a non-linear relationship 
between global features and pCO2

• Inputs are proxies for processes 
affecting ocean pCO2

Landschützer et al. 2013, 2014, 2016
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Comparing SOM-FFN and SOCAT
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SOCATv2019 data

Landschützer et al. 2013, 2014, 2016Bakker et al. 2016 EESD;  Sabine et al. 2013

Bias (global avg. 2.15 μatm)

SOM-FFN product



How large ensembles can help
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• Evaluate performance across different climate states

• 100 randomly selected ensemble members
• CanESM2 (25)
• CESM (25)
• GFDL (25)
• MPI (25)

• Each climate state is equally likely
• Only considering 1982-2015



Large ensemble pCO2 testbed
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1. Sample model member as 
SOCAT monthly pCO2 product

2. Train, evaluate, test 
reconstruction method 
at sampled locations

3. Estimate monthly 
varying pCO2 on global 
scale using trained 
model

4. Statistically compare 
reconstructed pCO2 to model 
truth. Each spatial point is 
temporally decomposed

x100 members Neural network reconstruction method

CESM 002

reconstruction



Large ensemble pCO2 testbed

© 2017 Lamont-Doherty Earth Observatory 9

SST

MLD
SSS

Chl
xCO2

pCO2

x100 members

1. Sample model member as 
SOCAT monthly pCO2 product

2. Train, evaluate, test 
reconstruction method 
at sampled locations

3. Estimate monthly 
varying pCO2 on global 
scale using trained 
model

x100 members Neural network reconstruction method

CESM 002

reconstruction

4. Statistically compare 
reconstructed pCO2 to model 
truth. Each spatial point is 
temporally decomposed



Large ensemble pCO2 testbed

© 2017 Lamont-Doherty Earth Observatory 10

SST

MLD
SSS

Chl
xCO2

pCO2

x100 members

1. Sample model member as 
SOCAT monthly pCO2 product

2. Train, evaluate, test 
reconstruction method 
at sampled locations

3. Estimate monthly 
varying pCO2 on global 
scale using trained 
model

x100 members Neural network reconstruction method

CESM 002

reconstruction

4. Statistically compare 
reconstructed pCO2 to model 
truth. Each spatial point is 
temporally decomposed



Large ensemble pCO2 testbed

© 2017 Lamont-Doherty Earth Observatory 11

SST

MLD
SSS

Chl
xCO2

pCO2

x100 members

1. Sample model member as 
SOCAT monthly pCO2 product

2. Train, evaluate, test 
reconstruction method 
at sampled locations

3. Estimate monthly 
varying pCO2 on global 
scale using trained 
model

x100 members Neural network reconstruction method

CESM 002

reconstruction

4. Statistically compare 
reconstructed pCO2 to model 
truth. Each spatial point is 
temporally decomposed



Large ensemble pCO2 testbed

© 2017 Lamont-Doherty Earth Observatory 12

SST

MLD
SSS

Chl
xCO2

pCO2

x100 members

1. Sample model member as 
SOCAT monthly pCO2 product

2. Train, evaluate, test 
reconstruction method 
at sampled locations

3. Estimate monthly 
varying pCO2 on global 
scale using trained 
model

x100 members Neural network reconstruction method

CESM 002

reconstruction

4. Statistically compare 
reconstructed pCO2 to model 
truth. Each spatial point is 
temporally decomposed



Temporal decomposition
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Ensemble member Reconstruction

Each location in each member and reconstruction decomposed 
into seasonal, decadal, and sub-decadal variability

detrend

Detrended Dec. var. Sub-dec. var.

++=

Seasonal

Cleveland et al. (1990) Journal of official statistics.

Full Signal



Statistical metrics 
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Long-term mean

Model Reconstruction

Phasing

Variability

r = "#$(&,()
*(*&

*∗ = *(
*&

− - ∗ -..%

Bias

Correlation

does reconstruction 
capture observed 
variability? 

0123 = 4&− 5(
bias

Is reconstruction 
in phase with 
model?

is there a 
systemic offset?

Normalized STD



Bias and number of observations

Is the reconstruction offset from the model?
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• Bias spatially varying but global average is low

• Less spread in bias in regions with more data

• Higher decadal correlation in regions with more data

Global avg = -0.44 μatm



Normalized standard deviation
Does the reconstruction capture the model’s variability?
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• Overestimates decadal variability in Southern Ocean by about 12%
• Reconciles gap between models and SOM-FFN



Conclusions
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performance dependent on data density

Overestimation of decadal variability 
reconciles the discrepancy with models

This testbed serves a platform to develop and test new methodologies

Bias is spatially heterogenous, but negligible 
on a global scale

Global avg = -0.44 μatm
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Email 
gloege@ldeo.columbia.edu

Testbed URL
figshare.com/s/4337ae68dccbcf34e14c

Take a picture to 
access the testbed



Extra slides
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• Higher correlations in sub-tropics
• Correlations are consistent across ensemble members

Correlation
Is the reconstruction in phase with the model?



Calculate air-sea CO2 exchange
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Air-sea CO2 flux
(relative to atmosphere)

Gas-transfer velocity and solubility

Ice fraction

Ocean and atmosphere pCO2

Weiss 1974, Wanninkhof 1992, Sweeney et al. 2007

• ERA-interim 6-hourly global atmospheric reanalysis used to estimate 
monthly varying wind-speed covariance

• Calculated air-sea CO2 exchange following Landschützer et al. 2014


