Internal variability in projections of climate change impacts on air quality and health

NCAR Large Ensembles Workshop July 26, 2019

 Fernando Garcia Menendez, James East, Bret Pienkosz – North Carolina State University
Rebecca Saari- University of Waterloo
Erwan Monier - University of California, Davis

NC STATE UNIVERSITY

Climate change impacts on air quality

Projected changes in 2100

Air Surface Temperature:

<u>Climate change impacts air</u> <u>quality through many coupled</u> <u>mechanisms:</u>

- \rightarrow Atmospheric chemistry
- \rightarrow Atmospheric ventilation
- \rightarrow Natural emissions
- \rightarrow Deposition rates

"Climate penalty" on air quality

Climate change impacts on air quality

Fourth National Climate Assessment

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II

Air Quality

Key Message 1

Carr Fire, Shasta County, California, August 2018

Increasing Risks from Air Pollution

More than 100 million people in the United States live in communities where air pollution exceeds health-based air quality standards. Unless counteracting efforts to improve air quality are implemented, <u>climate change will worsen existing air pollution levels</u>. This worsened air pollution would <u>increase the incidence of adverse respiratory and cardiovascular health effects</u>, including premature death. Increased air pollution would also have other environmental consequences, including reduced visibility and damage to agricultural crops and forests.

<u>Climate change impacts air</u> <u>quality through many coupled</u> <u>mechanisms:</u>

- \rightarrow Atmospheric chemistry
- → Atmospheric ventilation
- \rightarrow Natural emissions
- \rightarrow Deposition rates

"Climate penalty" on air quality

Focus on climate-induced impact:

 $\Delta \text{ Climate} + \Delta \text{ Emissions} \rightarrow \Delta \text{ Air Quality}$

Modeling framework:

U.S. EPA CIRA projections^[1]

MIT IGSM: Policy and climate projections^[2]

CAM-Chem: Global atmospheric chemistry

BenMAP: Health and economic impacts

Emissions held at start-of-century levels Simulated periods: start (2000), middle (2050), and end (2100) of 21st century

Ensemble simulations:

- 1. Emissions-scenario uncertainty:
 - Reference: No policy 2100 RF = 9.7 W/m²
 - Policy 4.5: Stabilization 2100 RF = 4.5 W/m²
 - Policy 3.7: Stringent stabilization 2100 RF = 3.7 W/m²
- 2. Natural variability
 - 30-year simulations
 - 5 different initializations
- 3. <u>Climate model response</u>
 - Climate sensitivity = 2.0°C, 3.0°C or 4.5°C

Ensemble-mean projections

Avoided U.S. deaths under climate policy: 2050: > 10,000 (4,000 - 22,000) 2100: > 50,000 (19,000 - 95,000)

Ensemble-mean projections

Opinions Report EPA boss: Climate change could kill thousands

More

Features

"Climate change is the greatest threat of our" time ... We're projecting that, if you take action, you could avoid approximately 13,000 deaths in 2050, and 57,000 from poor air quality that's associated with climate change."

EPA Administrator

International Edition 🗸

U.S. population-weighted annual PM₂₅ 14.5 REFERENCE 14 POLICY 4.5

Avoided U.S. deaths under climate policy:

2050: > 10,000 (4,000 - 22,000)

2100: > 50,000 (19,000 - 95,000)

News

Regions

Video

Natural variability

2100 Reference scenario O_3 season climate penalty (Δ 8h-max ppb)

Natural variability

2100 Reference scenario O_3 season climate penalty (Δ 8h-max ppb)

Natural variability

2100 Reference scenario O_3 season climate penalty (Δ 8h-max ppb)

Natural variability in O₃ penalty projections

2100 Reference scenario O_3 season climate penalty (Δ 8h-max ppb)

Averaging period (years)

Natural variability in PM_{2.5} penalty projections

2100 REF-scenario annual $PM_{2.5}$ climate penalty ($\Delta \mu g m^{-3}$)

Relative change with respect to start-of-century mean

2100 REF-scenario climate penalty on population-weighted concentrations in this ensemble:

O₃:

- + 3.2 μg/m³
- 15 years for ± 1.0 ppb margin of error (95% confidence)

PM_{2.5}:

- + 1.5 μg/m³
- 10 years for ± 0.5 µg/m³ margin of error (95% confidence)

2100 REF-scenario climate penalty on population-weighted concentrations in this ensemble:

O₃:

- + 3.2 μg/m³
- 15 years for ± 1.0 ppb margin of error (95% confidence)

PM_{2.5}:

- + 1.5 μg/m³
- 10 years for ± 0.5 μg/m³ margin of error (95% confidence)

2100 REF-scenario climate penalty on population-weighted concentrations in this ensemble:

O₃:

- + 3.2 μg/m³
- 15 years for ± 1.0 ppb margin of error (95% confidence)

PM_{2.5}:

- + 1.5 μg/m³
- 10 years for ± 0.5 µg/m³ margin of error (95% confidence)

Ensemble-mean projections

Likelihood (%) that ozone estimate exceeds 0.5 ppb threshold due to meteorological variability in the present-day simulation:

Increasing temporal averaging scales

Ensemble-mean projections

Projections of health and economic impacts

Projections of co-benefits of climate policy

Effect of uncertainties on percent of policy costs offset by reducing health risks from climate penalty

2050

2100

Range of climate penalty projections

Mean range of climate-induced O₃ change for each source of uncertainty

Range of climate penalty projections

Mean range of climate-induced PM_{2.5} change for each source of uncertainty

Projections of climate change impacts on air quality

Examining natural variability can inform projections of air quality under climate change, related health impacts, and climate policy assessments

Air quality considerations:

- Location and period of interest
- High concentrations and extreme air pollution
- Varying emissions and chemical composition
- Structural uncertainty in climate and chemistry models
- Simulations with interactive chemistry
- PM_{2.5} composition
- Complex treatment of SOA chemistry
- Natural emission sources (wildfires and dust)
- Increased resolution

Thank you

Acknowledgements:

James East, Bret Pienkosz

NC STATE UNIVERSITY

Rebecca Saari

UCDAVIS

Erwan Monier

Noelle Selin, Benjamin Brown-Steiner

Simone Tilmes, Louisa Emmons