
1 | Transcending Disciplines, Transforming Lives, Educating Leaders

Section Title Section Title 
Section Subtitle Section Subtitle

1 | RSIF

Machine learning models to 
improve parameterizations of climate models 

Pierre Gentine – Columbia University
Mike Pritchard, Tom Beucler, Stephan Rasp, Wenli Zhao

Clivar August 2019

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES



2 | Transcending Disciplines, Transforming Lives, Educating Leaders

1. Global carbon uptake

2 | Multiscale LA.

Large intermodel spread, large interannual variability
Define concentrations [CO2]=f(emission flux)

C. Le Quéré et al.: Global Carbon Budget 2017 423

timated by Regnier et al. (2013) at 0.65 ± 0.35GtC yr�1. We
do not attempt to incorporate the changes in LOAC in our
study.

The inclusion of freshwater fluxes of anthropogenic CO2
affects the estimates of, and partitioning between, SLAND and
SOCEAN in Eq. (1) in complementary ways, but does not af-
fect the other terms. This effect is not included in the GOBMs
and DGVMs used in our global carbon budget analysis pre-
sented here.

2.7.3 Loss of additional sink capacity

The DGVM simulations now used to estimate SLAND are car-
ried out with a time-invariant pre-industrial land-use mask.
Hence, they overestimate the land sink by ignoring histori-
cal changes in vegetation cover due to land use and how this
affected the global terrestrial biosphere’s capacity to remove
CO2 from the atmosphere. Historical land-cover change was
dominated by transitions from vegetation types that can pro-
vide a large sink per area unit (typically forests) to others
less efficient in removing CO2 from the atmosphere (typi-
cally croplands). The resultant decrease in land sink, called
the “loss of sink capacity”, is calculated as the difference be-
tween the actual land sink under changing land cover and the
counterfactual land sink under pre-industrial land cover.

An efficient protocol has yet to be designed to estimate the
magnitude of the loss of additional sink capacity in DGVMs.
Here, we provide a quantitative estimate of this term to
be used in the discussion. Our estimate uses the compact
Earth system model OSCAR (Gasser et al., 2017), whose
land carbon cycle component is designed to emulate the be-
haviour of TRENDY and CMIP5 complex models. We use
OSCAR v2.2.1 (an update of v2.2, with minor changes) in a
probabilistic setup identical to the one of Arneth et al. (2017)
but with a Monte Carlo ensemble of 2000 simulations. For
each, we calculate separately SLAND and the loss of ad-
ditional sink capacity. We then constrain the ensemble by
weighting each member to obtain a distribution of cumula-
tive SLAND over 1850–2005 close to the DGVMs used here.
From this ensemble, we estimate a loss of additional sink ca-
pacity of 0.4 ± 0.3 GtC yr�1 on average over 2005–2014 and
by extrapolation of 20 ± 15 GtC accumulated between 1870
and 2016.

3 Results

3.1 Global carbon budget mean and variability for
1959–2016

The global carbon budget averaged over the last half-century
is shown in Fig. 3. For this time period, 82 % of the to-
tal emissions (EFF + ELUC) were caused by fossil fuels
and industry and 18 % by land-use change. The total emis-
sions were partitioned among the atmosphere (45 %), ocean
(23 %), and land (32 %). All components except land-use
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Figure 3. Combined components of the global carbon budget il-
lustrated in Fig. 2 as a function of time, for emissions from fossil
fuels and industry (EFF; grey) and emissions from land-use change
(ELUC; brown), as well as their partitioning among the atmosphere
(GATM; purple), land (SLAND; green), and oceans (SOCEAN; blue).
The partitioning is based on nearly independent estimates from ob-
servations (for GATM) and from process model ensembles con-
strained by data (for SOCEAN and SLAND) and does not exactly
add up to the sum of the emissions, resulting in a budget imbal-
ance which is represented by the difference between the bottom red
line (reflecting total emissions) and the sum of the ocean, land, and
atmosphere. All time series are in GtC yr�1. GATM and SOCEAN
prior to 1959 are based on different methods. EFF is primarily from
Boden et al. (2017) with uncertainty of about ±5 % (±1� ); ELUC
are from two bookkeeping models (Table 2) with uncertainties of
about ±50 %; GATM prior to 1959 is from Joos and Spahni (2008)
with uncertainties equivalent to about ±0.1–0.15 GtC yr�1, and
from Dlugokencky and Tans (2018) from 1959 with uncertainties
of about ±0.2 GtC yr�1; SOCEAN prior to 1959 is averaged from
Khatiwala et al. (2013) and DeVries (2014) with uncertainty of
about ±30 %, and from a multi-model mean (Table 4) from 1959
with uncertainties of about ±0.5 GtC yr�1; SLAND is a multi-model
mean (Table 4) with uncertainties of about ±0.9 GtC yr�1. See the
text for more details of each component and their uncertainties.

change emissions have grown since 1959, with important in-
terannual variability in the growth rate in atmospheric CO2
concentration and in the land CO2 sink (Fig. 4), as well as
some decadal variability in all terms (Table 6).

3.1.1 CO2 emissions

Global CO2 emissions from fossil fuels and industry have in-
creased every decade from an average of 3.1 ± 0.2 GtC yr�1

www.earth-syst-sci-data.net/10/405/2018/ Earth Syst. Sci. Data, 10, 405–448, 2018
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Figure 6.24 |  Cumulative land and ocean carbon uptake simulated for the historical period 1850–2005 (top) and for the four RCP scenarios up to 2100 (b–e). Mean (thick 
line) and 1 standard deviation (shaded). Vertical bars on the right show the full model range as well as standard deviation. Black bars show observationally derived estimates for 
2005. Models used: Canadian Earth System Model 2 (CanESM2), Geophysical Fluid Dynamics Laboratory–Earth System Model 2G (GFDL–ESM2G), Geophysical Fluid Dynamics 
Laboratory–Earth System Model 2M (GFDL–ESM2M), Hadley Centre Global Environmental Model 2–Carbon Cycle (HadGEM2-CC), Hadley Centre Global Environmental Model 
2–Earth System (HadGEM2-ES), Institute Pierre Simon Laplace–Coupled Model 5A–Low Resolution (IPSL–CM5A–LR), Institute Pierre Simon Laplace–Coupled Model 5A–Medium 
Resolution (IPSL–CM5A–MR), Institute Pierre Simon Laplace–Coupled Model 5B–Low Resolution (IPSL–CM5B–LR), Model for Interdisciplinary Research On Climate–Earth System 
Model (MIROC–ESM–CHEM), Model for Interdisciplinary Research On Climate–Earth System Model (MIROC–ESM), Max Planck Institute–Earth System Model–Low Resolution 
(MPI–ESM–LR), Norwegian Earth System Model 1 (Emissions capable) (NorESM1–ME), Institute for  Numerical Mathematics Coupled Model 4 (INMCM4), Community Earth System 
Model 1–Biogeochemical (CESM1–BGC), Beijing Climate Center–Climate System Model 1.1 (BCC–CSM1.1). Not every model performed every scenario simulation.
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2. Climate sensitivity

3 | Multiscale LA.

Still substantial spread in model climate sensitivity 
global T=f(greenhouse gases):

Limits our climate mitigation and management capacity and increases cost 
Mostly due to clouds

Radiation

Precipitation

Vegetation
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opinion & comment

COMMENTARY:

Climate goals and computing 
the future of clouds
Tapio Schneider, João Teixeira, Christopher S. Bretherton, Florent Brient, Kyle G. Pressel, Christoph Schär 
and A. Pier Siebesma

How clouds respond to warming remains the greatest source of uncertainty in climate projections. Improved 
computational and observational tools can reduce this uncertainty. Here we discuss the need for research 
focusing on high-resolution atmosphere models and the representation of clouds and turbulence within them.

In the 2015 Paris Agreement1, 
193 countries agreed to holding 
“the increase in the global average 

temperature to well below 2 °C above 
pre-industrial levels … to reduce the risks 
and impacts of climate change”. Currently, 
the carbon dioxide concentration in the 
atmosphere stands at 404 ppm. This is 
120 ppm higher than in pre-industrial 
times, and Earth has already warmed 
1 °C since then2. How much higher can 
the concentration of CO2 and other 
greenhouse gases rise before the 2 °C 
threshold is crossed? The answer to this 
crucial question is uncertain. Depending 
on which, if any, climate model one 
trusts, CO2 concentrations could reach 
between 470 and 600 ppm before the 2 °C 
warming threshold is crossed (Fig. 1a). 
Or, translated into time by assuming CO2 
concentrations continue to rise rapidly3, 
the 2 °C threshold may be crossed by the 
late 2030s, or much later at around 2060 
(Fig. 1a, right axis). Optimal emission 
pathways differ vastly between allowable 
CO2 concentrations at the high or low end 
of this spectrum. 

A number of factors contribute to 
the spread of projections, including 
uncertainties about how much heat oceans 
take up and how anthropogenic aerosols 
affect climate. But the bulk of the spread 
can be traced to the equilibrium climate 
sensitivity, ECS (Fig. 1a). ECS is the global 
surface temperature increase that results 
after CO2 concentrations have doubled 
and the climate system has equilibrated to 
this one perturbation4. Because regional 
changes, for example in temperature or 
precipitation extremes, scale with global 
surface temperature5, ECS also measures 
how strongly rising CO2 concentrations 

impact regional climate. ECSs of current 
climate models are scattered between 2 and 
5 K. This wide range of ECS has neither 
shifted nor narrowed substantially since 
the first comprehensive climate change 

assessment4,6 by the US National Academy 
of Sciences in 1979.

What lies behind the recalcitrant ECS 
uncertainty are primarily uncertainties 
about how clouds respond to warming, 
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Figure 1 | Dependence of climate goals on equilibrium climate sensitivity (ECS) and of ECS on low-cloud 
feedback. a, Allowable CO2 concentration before 2 °C warming threshold is crossed versus ECS. The 
bottom axes displays 1/ECS, the left axes the allowable CO2 concentration, and the right axes the year 
when the 2 °C threshold is crossed (correlation coefficient r = 0.89). Each circle represents a climate 
model, numbered and coloured in order of increasing ECS (ref. 9). The horizontal axis is expressed as 
1/ECS because temperature changes ΔT and concentration changes ΔCO2 are to first order related by 
ΔT ∝ ECS × ΔCO2, so one expects ΔCO2 ∝ 1/ECS for fixed ΔT. The allowable CO2 concentration for 
each model is determined from a high-emission scenario simulation3 as the concentration when the 
5-year low-pass filtered global mean surface temperature rises 1.19 °C above the model’s average for 
2006–2015 (ref. 4). The 1.19 °C represents what remains of the 2 °C target because global mean surface 
temperatures2 have increased by 0.81 °C from 1861–1880 to 2006–2015. Allowable CO2 concentrations 
depend only weakly on the emission scenario considered (provided the 2 °C threshold is crossed in a 
scenario); however, the corresponding time when the 2 °C threshold is crossed (right axis) does depend 
on the emission scenario. Additional uncertainties would arise when one tries to convert allowable CO2 
concentrations into allowable emissions because it is uncertain how much of the emitted carbon dioxide 
will remain airborne. b, ECS versus changes in the amount of sunlight reflected by low clouds over 
tropical oceans9 (r = 0.73). A reduced reflection under warming (negative values) implies an amplifying 
feedback by tropical low clouds on the warming; an increased reflectance implies a damping feedback 
by tropical low clouds.
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Schneider, T., et al. (2017). Nature Climate Change

ECS = Equilibrium climate sensitivity (T response do CO2 doubling)
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3. Regional climate sensitivity
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Cloud impact is not just global but also regional
(also circulation feedback)

Regional climate prediction is too uncertain

Radiation

Precipitation

Vegetation

Stevens, B., & Bony, S. (2013). Science

31 MAY 2013    VOL 340    SCIENCE    www.sciencemag.org 1054

PERSPECTIVES

Key Uncertainties

The increase in complexity has greatly 
expanded the scope of questions to which 
GCMs can be applied ( 5). Yet, it has had 
relatively little impact on key uncertainties 
that emerged in early studies with less com-
prehensive models ( 6). These uncertainties 
include the equilibrium climate sensitivity 
(that is, the global warming associated with 
a doubling of atmospheric carbon dioxide), 
arctic amplifi cation of temperature changes, 
and regional precipitation responses. Rather 
than reducing biases stemming from an 
inadequate representation of basic pro-
cesses, additional complexity has multiplied 
the ways in which these biases introduce 
uncertainties in climate simulations ( 7,  8).

For instance, a poor understanding of what 
controls the distribution of tropical precipita-
tion over land, and hence vegetation dynam-
ics, limits attempts to understand the carbon 
cycle ( 9). Similarly, uncertainties in arctic 
amplifi cation of warming hinder predictions 
of permafrost melting and resultant changes 
in soil biogeochemistry.

Although the drive to complexity has not 
reduced key uncertainties, it has addressed 
Smagorinsky’s question ( 2) as to what level 
of process detail is necessary to understand 
the general circulation. There is now ample 
evidence that an inadequate representation of 
clouds and moist convection, or more gener-
ally the coupling between atmospheric water 
and circulation, is the main limitation in cur-
rent representations of the climate system.

That this limitation constitutes a major 
roadblock to progress in climate science can 
be illustrated by simple numerical experi-

ments. In idealized simulations of a water-
world that neglect complex interactions 
among land surface, cryosphere, biosphere, 
and aerosol and chemical processes (see the 
fi gure), the key uncertainties associated with 
the response of clouds and precipitation to 
global warming are as large as they are in 
comprehensive Earth System Models ( 10).

Differences among the simulations in 
the fi gure are especially evident in the trop-
ics, where the sign of cloud changes and the 
spatial structure of the precipitation response 
differ fundamentally between models. This 
diversity of responses arises because, at low 
latitudes, the coupling between water and 
circulation is disproportionately dependent 
on the representation of unresolved pro-
cesses, such as moist convection and cloud 
formation ( 11,  12). The mid-latitudes show 
more robust responses because much of 
the energy transport is carried by baroclinic 
eddies; these, too, are fundamentally coupled 
to water, but they are much better described 
and resolved by modern GCMs, as foreseen 
by Smagorinsky ( 1).

The uncertain interplay between water 
and circulation that underlies differences in 
the response of the climate system to warm-
ing (see the fi gure) can be expressed in terms 
of more specifi c questions. For instance, how 
do marine boundary-layer clouds depend on 
their environment? Or how do atmospheric 
circulations couple to moist convection 
through surface and radiative fl uxes? The fi rst 
question ends up being key to explaining the 
intermodel spread in climate sensitivity ( 13, 
 14), the second to the pattern of the regional 
response to warming. Differences in regional 

responses also infl uence ocean circulations, 
and hence how oceans take up heat, as well as 
patterns of precipitation, and hence how the 
land biosphere takes up carbon.

Back to Basics

A deeper understanding and better represen-
tation of the coupling between water and cir-
culation, rather than a more expansive repre-
sentation of the Earth System, is thus neces-
sary to reduce the uncertainty in estimates of 
the climate sensitivity and to guide adapta-
tion to climate change at the regional level. 
This knowledge should help focus efforts 
and lead to progress in reducing the impreci-
sion of climate models in the next 50 years. 
Here, Numerical Weather Prediction (NWP) 
provides a good example. By focusing on 
key limitations in the model initialization, 
spatial resolution, and the representation 
of key parameterized processes, NWP has 
improved forecast skill substantially over 
the past 30 years ( 15).

It is time to draw lessons from the era of 
experimentation that Smagorinsky launched 
half a century ago, and focus climate model-
ing efforts on advancing understanding and 
improving the numerical representations of 
how clouds, moist convection, and heating 
couple to the general circulation. 
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1. Using ML for climate: (deep) clouds
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Randall, D. et al.. (2003)., Bulletin Of The American Meteorological Society, 

Parameterization: represent (physically or statistically) a 
physical process that cannot be resolved (e.g. clouds)

Typically physically based

with      coarse-scale average of 

However: it has failed for ~40 years (Randall et al. 2003)

This largely explains intermodal spread in climate prediction

Ⓒ climate-dynamics.org
~100km

∂X
∂t |clouds

= f (X ) X X
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1. Using ML for climate: (deep) clouds

6 | ML4Earth Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018

How can we solve this issue?
Take advantage of cloud-resolving simulations 
(~1km, alleviate most biases but very expensive)

Not “physical” but
Data-driven approach
(informed by cloud-resolving simulations)

Deep Neural Net  or Convolutional NN

Cost function:
misfit to 

coarse-grained
high-res. 

model

Global “CRM”

Coarse graining

Temperature T (z)
Specific humidity q(z)

Surface sensible heat flux H
Surface evaporation E

Surface pressure Ps
Precipitation

∂T
∂t |convection
∂q
∂t |convection
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1. Using ML for climate: (deep) clouds

7 | ML4Earth

Coarse-grained
Cloud-resolving 

Model
(superparameterization)

Machine 
learning 

Coarse-resolution
model

10 times cheaper than original coarse model, 1000 less expensive than high-res model
Question: generalization to unforeseen conditions? Climate change

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018
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1. Using ML for climate: (deep) clouds

8 | ML4Earth

Regular CAM 
parameterization

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

10 times cheaper than original coarse model, 1000 less expensive than high-res model
Question: generalization to unforeseen conditions? Climate change: Poor!

Interactive model

Now we have good 
boundary condition to 

study hydrology J
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Issues

9 | ML4Earth

1. Physical Constraints 
Energy conservation
Mass conservation

Only approximate with ML

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018
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Issues

10 | ML4Earth

2. Extrapolation
ML has mostly been about interpolations 

using lots of data, poor extrapolation

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018
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Issues

11 | ML4Earth

2. Extrapolation
ML has mostly been about interpolations 

using lots of data, poor extrapolation

Gentine P., Pritchard M., Rasp S., Reinaudi G., GRL, 2018
Rasp, Pritchard and Gentine, PNAS 2018

Brenowitz and Bretherton, GRL, 2018
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Constraining physics within ML
1. Convection

Energy and mass conservations 
Impose them within NN as function of inputs (x) and outputs (y):

2 equations: reduce NN degrees of freedom to n-2 degrees of freedom

Beucler, Pritchard, Rasp, Gentine, PRL, submitted

Hybrid approaches

Exact 
conservations
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Constraining physics within ML
1. Convection

Energy and mass conservations 

Beucler, Pritchard, Rasp, Gentine, PRL, submitted

Hybrid approaches

Unconstrained Constrained

Current 
climate

Future 
climate

Constrained 
physics + 
improved 

generalization 
J
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Constraining physics within ML
2. Land surface latent heat flux (LE)

Objective: predict LE from environmental variables

o Pure ML (feedforward NN) performs well

o But does not conserve surface energy budget
𝑅" − 𝐺 ≠ 𝐻 + 𝐿𝐸

Zhao, Gentine, Reichstein, GRL, submitted

Hybrid approaches
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Constraining physics within ML
2. Land surface latent heat flux (LE)

Objective: predict LE + conserve energy + respect diffusion

o Hybrid ML performs as well as pure ML

o Conserves surface energy budget J
𝑅" − 𝐺 = 𝐻 + 𝐿𝐸

Zhao, Gentine, Reichstein, GRL, submitted

Hybrid approaches

LE = ρ
es − ea
rs + ra
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Constraining physics within ML
2. Land surface latent heat flux (LE)

Out-of-sample generalization/extremes
Test 1 and 99 percentiles

Zhao, Gentine, Reichstein, GRL, submitted

Hybrid approaches

Hybrid 
systematically 
outperforms 
pure ML for 
extremes

J

drought

heat 
wave

dryness
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Machine learning is an appealing approach 
for subgrid parameterizations

Two working examples
1. Deep clouds

2. Land surface processes (evapotranspiration)

Issues: 
1. Conservations, physical invariances, physical laws

2. Generalization 

Solution:
Hybrid physical+ML approaches appear 

as powerful tools to tackle this

Conclusions
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THANK YOU

Questions?


