Machine learning models to improve parameterizations of climate models

Pierre Gentine – Columbia University Mike Pritchard, Tom Beucler, Stephan Rasp, Wenli Zhao

1. Global carbon uptake

Large intermodel spread, large interannúal variability Define concentrations [CO₂]=f(emission flux)

2. Climate sensitivity

Still substantial spread in model climate sensitivity global T=f(greenhouse gases):

Limits our climate mitigation and management capacity and increases cost Mostly due to **clouds**

ECS = Equilibrium climate sensitivity (T response do CO₂ doubling)

3. Regional climate sensitivity

Cloud impact is not just global but also regional (also circulation feedback)

Aquaplanet +4K (no SST feedback!)

Regional climate prediction is too uncertain

Parameterization: represent (physically or statistically) a physical process that cannot be resolved (e.g. clouds)

Typically physically based

$$\frac{\partial \overline{X}}{\partial t}_{\text{lclouds}} = f(\overline{X})$$
 with \overline{X} coarse-scale average of X

However: it has failed for ~40 years (Randall et al. 2003)
This largely explains intermodal spread in climate prediction

How can we solve this issue?
Take advantage of cloud-resolving simulations
(~1km, alleviate most biases but very expensive)

Not "physical" but **Data-driven approach**(informed by cloud-resolving simulations)

 $rac{\partial \overline{q}}{\partial t}$ coarse-grained high-res. model

Deep Neural Net or Convolutional NN

Cost function:

misfit to

10 times cheaper than original coarse model, 1000 less expensive than high-res model **Question: generalization to unforeseen conditions? Climate change**

10 times cheaper than original coarse model, 1000 less expensive than high-res model Question: generalization to unforeseen conditions? Climate change: Poor!

Issues

1. Physical Constraints
 Energy conservation
 Mass conservation
Only approximate with ML

Issues

2. **Extrapolation**ML has mostly been about interpolations using lots of data, poor extrapolation

Issues

2. **Extrapolation**ML has mostly been about interpolations using lots of data, poor extrapolation

Constraining physics within ML 1. Convection Energy and mass conservations

Impose them within NN as function of inputs (x) and outputs (y):

$$\left\{ \boldsymbol{C} \left[\begin{array}{c} x \\ y \end{array} \right] = 0 \right\}$$

2 equations: reduce NN degrees of freedom to n-2 degrees of freedom

Constraining physics within ML 1. Convection **Energy and mass conservations**

Unconstrained Constrained

Current climate

Future climate

Constrained physics + improved generalization \odot

Constraining physics within ML 2. Land surface latent heat flux (LE)

Objective: predict LE from environmental variables

o Pure ML (feedforward NN) performs well

But does not conserve surface energy budget

$$R_n - G \neq H + LE$$

Constraining physics within ML

2. Land surface latent heat flux (LE)

Objective: predict LE + conserve energy + respect diffusion $LE = \rho \frac{e_s - e_a}{r_s + r_a}$

o Hybrid ML performs as well as pure ML

Conserves surface energy budget ©

$$R_n - G = H + LE$$

Constraining physics within ML
2. Land surface latent heat flux (LE)
Out-of-sample generalization/extremes

Test 1 and 99 percentiles

Hybrid systematically outperforms pure ML for extremes

Conclusions

Machine learning is an appealing approach for subgrid parameterizations

Two working examples

- 1. Deep clouds
- 2. Land surface processes (evapotranspiration)

Issues:

Conservations, physical invariances, physical laws
 Generalization

Solution:
Hybrid physical+ML approaches appear as powerful tools to tackle this

THANK YOU

Questions?

