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Large intermodel spread, large interannual variability
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2. Climate sensitivity

Still substantial spread in model climate sensitivity
global T=f(greenhouse gases).
Limits our climate mitigation and management capacity and increases cost
Mostly due to clouds

Amplifying Damping
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1/ECS (K™ Low-cloud reflectance change (% K™)

ECS = Equilibrium climate sensitivity (T response do CO, doubling)
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3. Regional climate sensitivity

Cloud impact is not just global but also regional

(also circulation feedback)
CHANGE IN CLOUD RADIATIVE EFFECTS
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Regional climate prediction is too uncertain
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1. Using ML for climate: (deep) clouds

Parameterization: represent (physically or statistically) a
physical process that cannot be resolved (e.g. clouds)
Typically physically based

ox
a 4 Iclouds

However: it has failed for ~40 years (rRandall et al. 2003)
This largely explains intermodal spread in climate prediction

= f(X) with X coarse-scale average of X
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1. Using ML for climate: (deep) clouds

How can we solve this issue?
Take advantage of cloud-resolving simulations _
(~Tkm, alleviate most biases but very expensive)sd

Global “CRM"

Not “physical” but
Data-driven approach
(informed by cloud-resolving simulations)

Temperature 7 (z)@8 oT
Specific humidity g(z)

J Cost function:
! |convection

Surface sensible heat flux H g _ Misfit to
N aq coarse-grained

Surface evaporation E § . —= high-res.

Surface pressure R (\/ e /7 ) at |convection model
4 Precipitation
@ Input Layer 7 Hiddenrlr_ayer @ Output Layer
Deep Neural Net or Convolutional NN
. . h . »
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1. Using ML for climate: (deep) clouds

Day: 0 - Hour: 0.0
SPCAM PREC SPCAM OLR

Coarse-grained

Cloud-resolving S s S b

Model W
(superparameterization) "
CLOUDBRAIN PREC £ s

Machine _ . . &
learning e N

Coarse-resolution I
model

Difference PREC Difference OLR

10 times cheaper than original coarse model, 1000 less expensive than high-res model
Question: generalization to unforeseen conditions? Climate change
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1. Using ML for climate: (deep) clouds
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10 times cheaper than original coarse model, 1000 less expensive than high-res model
Question: generalization to unforeseen conditions? Climate change: Poor!
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Issues

1. Physical Constraints
Energy conservation
Mass conservation
Only approximate with ML
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Pressure [hPa]
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Issues

2. Extrapolation
ML has mostly been about interpolations
using lots of data, poor extrapolation

SPCAM

equatorial | poleward,
contraction| upward
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Issues

2. Extrapolation
ML has mostly been about interpolations
using lots of data, poor extrapolation
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Hybrid approaches

Constraining physics within ML
1. Convection
Energy and mass conservations
Impose them within NN as function of inputs (x) and outputs (y):
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Hybrid approaches

Constraining physics within ML
1. Convection
Energy and mass conservations

Unconstrained Constrained

(a) NNU (4+0K) (b) NNL(a = 0.01) (+0K)
Current
climate Constrained
physics +
Improved
Future genera@gzatlon
climate
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Hybrid approaches

Constraining physics within ML
2. Land surface latent heat flux (LE)
Objective: predict LE from environmental variables

1000 y="26399

|R?=0.81

|IMAPE= 20.89 %
o [MAE= 33.99

[RMSE= 46.26

LE True val (W m~2)

(i)
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LE_ML val (W m~?)
R,-G val (W m~?)
1000 1v="26399 7]
R?=0.90
800 |MAPE= 12.08

MAE= 45.81
RMSE= 62.23

o But does not conserve surface energy budget
R,— G+ H+LE
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Hybrid approaches

Constraining physics within ML
2. Land surface latent heat flux (LE)

e —e
Objective: predict LE + conserve energy + respect diffusion LE = p—=——*~
r+r

VUUTN="26399
R2=0.78

800 |MAPE= 20.79 %
MAE= 36,87
RMSE= 51.45

600{y=1.

4001

LE True val (W m~2)

o Hybrid ML performs as well as pure ML/
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LE hybrid val (W m~—2
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600 {y=1.00*x

o Conserves surface energy budget ©
R,—G=H+LE
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Hybrid approaches

Constraining physics within ML
2. Land surface latent heat flux (LE)
Out-of-sample generalization/extremes
Test Tand 99 percentiles

drought
1. T Hybrid
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Conclusions

Machine learning is an appealing approach
for subgrid parameterizations

Two working examples
1. Deep clouds
2. Land surface processes (evapotranspiration)

Issues:
1. Conservations, physical invariances, physical laws
2. Generalization

Solution:
Hybrid physical+ML approaches appear
as powerful tools to tackle this
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THANK YOU

Questions?
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