Understanding Future Change in Subseasonal Temperature Variability and Heat Waves with the Large Ensemble Approach

Haiyan Teng
NCAR CGD

Acknowledgement: Grant Branstator, Ahmed Tawfik, Patrick Callaghan, Andy Mai, Jerry Meehl, Warren Washington, CESM / CESM1 large ensemble / CCR production team
2010 July monthly mean anomalies

- Russian Heat Wave
- Pakistan floods
- Warmest Jul since 1961 in China
- New warmest record in many US cities
- Record cool summer in Santa Barbara

Stippling: >= 2 stddev
JJA daily surface air temperature at the Great Plains in CESM1 LE

~5°C increase in mean temperature

~1°C increase in 97.5th warm tail due to variability change

remove time-evolving climatologies

The daily climatology is defined as 30-member average within a 30-day running window.
JJA surface air temperature (TAS)
change from 1980-2010 to 2070-2100 in CESM1

- Mean
- Remove time-evolving climo
- 20-90 day Std dev
- 97.5th percentile
Will climate change amplify Rossby wave anomalies and cause stronger heat waves?
Will climate change amplify Rossby wave anomalies and cause stronger heat waves?

Great Plains heat wave composite
psi200, TAS & Plum flux
Will climate change amplify Rossby wave anomalies and cause stronger heat waves?

Percentage change in JJA mean soil moisture from 1980-2010 to 2070-2100 in CESM1

dots: 95% significant

drier surface
change Bowen ratio
stronger heat waves

Great Plains heat wave composites

surface air temperature anom

surface sensible heat flux anom

surface latent heat flux anom

dots: 95% significant
Turning the land knob: How can regional soil moisture forcing excite circumglobal wave trains?

100-member mean MJJA Z200 response

- Take 100 different initial conditions from the 2600-year CAM5 atm/Ind stand-alone control
- Prescribe soil moisture in the Great Plains to close to zero
- Derive the near-surface diabatic heating anomalies in the soil moisture experiment
- Impose the heating in 100-member CAM5
Turning the land knob: How can regional soil moisture forcing excite circumglobal wave trains?

Linear planetary wave model response PSI250

- Heating
- Eddy forcing $-\nabla^2 \psi \cdot \nabla \zeta$
- $a+b$

psi250 (x10^6 m^2 s^-1)

-0.8 to 0.8
Will climate change amplify stationary wave variability and cause more extremes?

- Under a high emission scenario in CESM1, the 20-90 day stddev of JJA TAS is increases by ~15% over the Great Plains by the end of the 21st century.

- The increased temperature variability can be partly caused by enhanced atmosphere-land interaction under the future warmer/drier climate.

- Subseasonal variability in the planetary waves is slightly reduced in the midlatitude. In fact the planetary waves associated with Great Plains extremes become less, not more, circumglobal.

- CESM1 produces robust, consistent and circumglobal summertime circulation response to prescribed soil water at various US location. Synoptic eddies play a crucial role in producing the circumglobal response.

Teng et al. 2019: Circumglobal response to prescribed soil moisture over Norther America, J. Climate.

Teng et al. 2019: Amplification of waveguide teleconnection in the boreal summer, Curr Clim Change Rep, submitted.
Takeaways...

Don’t settle with stationarity: LENS is a great experiment for studying variability change!

Don’t settle with the model: turn the knob!
Acknowledgement

- Large ensemble
- Long control
- Process understanding

Grant Branstator