Integrated Analysis and Planning to Reduce Coastal Flood Risk, Improve Water Quality, and Restore Ecosystems: Jamaica Bay, New York

Jordan R. Fischbach, Debra Knopman, Heather Smith, Philip Orton, Eric W. Sanderson, Kim Fisher, Nerissa Moray, Adam Friedberg, and Adam Parris

ARCADIS

Photo: https://thesparkspread.wordpress.com/tag/sunnv-day-flooding

RAND

Jamaica Bay is experiencing salt marsh erosion, more frequent tidal flooding, and stresses on water quality

Project background

- Funding
 - Grant in 2014 from the Rockefeller Foundation to RAND in partnership with BuroHappold and the Science + Resilience Institute
 - Team included Institute members, Wildlife Conservation Society and Stevens, with partners Arcadis and HDR
- Objective
 - Demonstrate value of building integrated analytical tools and interactive approach to long-term planning under uncertainty

Project demonstrated value of building integrated models and interactive approach to facilitate planning under uncertainty

We engaged a range of stakeholders to discuss:

- Nature of the decisions about risk reduction
- Goals and metrics for building resilience and equity
- Salient uncertainties that might influence future outcomes
- Modeling tools and data required to execute the analysis

We considered multiple planning goals for the Bay

Metric(s)

- Acreage and extent of ecosystems by type
- Change in land area (landscape gain/loss)

Change in tidal flood levels

- Tidal flooding inundation area
- Tidal flood exposure (count of structures flooded by type)
- Dissolved oxygen concentration (bay-wide DO area-days)

Hydrodynamic Modeling Domain, Land Elevations, and Water Depths

Longitude

Ecosystem modeling with Visionmaker Marsh

Jamaica Bay modeled ecosystems 9/2/2016 15:18:53

Year: 0.0 Delta t: 50.0 Step: 0.0 SLR: 0.0 m Input file: tidedatums_0 Built/unmodeled

Ecosystem

- Deep lagoon waters
- Shallow lagoon waters
- Marine intertidal mudflat
- Salt marsh
- Salt scrub
- Upland

Changes in a Future Without Action

Year	Climate Scenario	NPCC Percentile	SLR (inches)	Temperature Change (Annual Average; °F)	Annual Rainfall Change (%)	
2041	Mid	50 7.4 3.9		5		
2041	High	90	15.8	5.2	10	
2066	Mid	50	16.7	6.0	10	
2066	High	90	35.6	8.3	15	

NOTE: SLR baseline converted to 2016. Temperature baseline = 1985.

25- and 50-year climate scenarios based on 2015 New York Panel on Climate Change (NPCC) estimates

Bay ecosystems show continued decline in future scenarios

Structures Exposed to Any Flooding in a Persistent Tidal Event

High sea level rise dramatically increases tidal flood exposure

Assets exposed to monthly tidal flooding (any depth), year 50

Old Howard Beach Somerville and Broad Arverne Channel Edgemere M. M. S.

Building category

High sea level rise dramatically increases tidal flood exposure

Baywide Concepts to Reduce Vulnerabilities

Concept 1: Barrier Plus Restoration

projects are indicated with yellow lines

Spring Creek 1974 North Hawtre Basi Poin Creek Spring **Creek South** Frank Charles Fresh Park Creek Paerdegat Basir McGuire Field Bayswater SP Bergen Beach Goose Basin Pond Marsh Norton Conch Basin Basin Dubos Four Bayswate Sparrow Point Brant Sunset Point Cove Vernam Barbado Beach Rockaway Community Dead Shellbank Somerville Park Horse Bay Creek Basin Inlet Narrowing Inlet **NOTE: Proposed Raised Shoreline** Narrowing

Concept 2: Narrowing and Wetlands

Baywide Concept Results

Scenario/Concept

Baywide concepts somewhat reduce Year 50 exposure to flooding

NOTE: Asset exposure to any nonzero flood depth, MMHW.

RAND RR2193-6.10

Concept Summary for Selected Metrics Compared to a FWOA

Metric	Year	Scenario	Concept 1 (%)	Concept 2 (%)
Land area change	25	Mid	3	23
		High	4	29
	50	Mid	4	30
		High	4	28
Number of assets no longer flooded	25	Mid	26	21
		High	31	27
	50	Mid	30	25
		High	14	10
Reduced bottom-layer area-days below 4.8 mg/L	50	Mid	5	13
Percent improvement from FWOA				

1%

Note: Land area change omits the inlet narrowing included in Concept 2

40%

Outcomes and key findings

- Building trust in the analysis before results are generated is essential
- The process needs to allow for learning and modifying options
- Integrated model development often can be the rate-limiting step
- Widespread diffusion of these methods will require networks of users, easy-tocustomize tools, and organizations to support local governments

Building Resilience in an Urban Coastal Environment

Integrated, Science-Based Planning in Jamaica Bay, New York

Jorden R. Pachlasch, Bales Korganan, Hanihar Janih, Halip Greon, Dis Sonderson, Kim Fahar, Mariano Monay, Adom Friedbarg, Adom Partir

Fischbach, Jordan R., Debra Knopman, Heather Smith, Philip Orton, Eric W. Sanderson, Kim Fisher, Nerissa Moray, Adam Friedberg, and Adam Parris, Building Resilience in an Urban Coastal Environment: Integrated, Science-Based Planning in Jamaica Bay, New York. Santa Monica, CA: RAND Corporation, 2018.

https://www.rand.org/pubs/ research_reports/RR2193.html. Also available in print form.

Integrated Modeling Framework

Area of interest

Hydrodynamic Modeling Domain, Land Elevations, and Water Depths

Longitude

Ecosystem modeling with Visionmaker Marsh

Jamaica Bay modeled ecosystems 9/2/2016 15:18:53

Year: 0.0 Delta t: 50.0 Step: 0.0 SLR: 0.0 m Input file: tidedatums_0 Built/unmodeled

Ecosystem

- Deep lagoon waters
- Shallow lagoon waters
- Marine intertidal mudflat
- Salt marsh
- Salt scrub
- Upland

Year/Scenario

Bay ecosystems show continued decline in future scenarios

Concept 1: Barrier and Restoration, 50th percentile, Year 50 compared to Current Conditions (year 0). Land change reflects areas converting to or from shallow or deep lagoon waters.

Concept 2: Narrowing and Wetlands, 50th percentile, Year 50 compared to Current Conditions (year 0). Land change reflects areas converting to or from shallow or deep lagoon waters.