Separating climate variability and climate change:

How many ensemble members are needed?

Robert C. Jnglin Wills University of Washington

1 Mar

1880

Tapio Schneider, David Battisti, Kyle Armour The Large Ensembles Workshop – July 25, 2019

100000

2017

0.5

Canonical methods for identifying the climate response to external (e.g., anthropogenic) forcing

Observed change in surface temperature 1901-2012

Spatial (e.g. global) average:

- Loses spatial information
- Which regions are responsible for the changes in the rate of global warming?

Local linear trend:

- Loses temporal information
- What are the relative timings of warming in different regions?

Signal-to-noise maximizing EOF analysis

1860

1880

1900

1920

year

1940

1960

1980

2000

- Find temperature pattern (linear combination of EOFs) with the highest ratio of climate **signal** (ensemble members agree on timing of change) to **noise** (ensemble members don't agree)
- Ting et al. 2009 applied this method to CMIP3 models with multiple ensemble members each, but it is also useful for a single-model large ensemble

Signal-to-noise maximizing EOF analysis of CESM Large Ensemble

- 1. CESM1 40-member historical ensemble (3-month average temperature anomalies, 1920-2005)
- 2. Find temperature patterns for which ensemble members have the maximum agreement on the temporal evolution (*externally forced patterns*)
- 3. Requires ensemble of simulations (a drawback I will return to)

1st externally forced pattern

150 EOFs included

2nd externally forced pattern

150 EOFs included

3rd externally forced pattern

150 EOFs included

4th externally forced pattern

150 EOFs included

How many patterns constitute forced response?

• Note eigenvalue reductions after EFCs 2, 5, 7, and 10

How many patterns constitute forced response?

- Note eigenvalue reductions after EFCs 2, 5, 7, and 10
- **Pattern Filtering:** Keep only variance associated with leading forced patterns (7 in this case)

Comparison of 20-member half ensembles

Comparison of 20-member half ensembles

Comparison of 20-member half ensembles

Grid-point correlation between halves of large ensemble

How many ensemble members are needed?

Global-mean of grid-point correlation² with opposite 20-member half ensemble (pattern filtered)

How many ensemble members are needed?

Global-mean of grid-point correlation² with opposite 20-member half ensemble (pattern filtered)

 Pattern filtering can extract the forced response with ~7 times fewer ensemble members than simple mean!

What can we do with a single ensemble member?

- 1. Forced climate responses differs in time scale from most internal variability
- 2. Instead find temperature patterns with the maximum ratio of low-frequency (decadal) to high-frequency variance
 - Low-frequency component analysis (LFCA, Wills et al. 2018)
 - -Initially suggested by Schneider & Held (2001) as a means to isolate forced response in observations
 - Used recently to identify patterns and mechanisms of decadal variability in the Pacific (*Wills et al. 2018, 2019, GRL*) and Atlantic (*Wills et al. 2019, J. Climate*)

Low-frequency components of CESM-LE

How many ensemble members are needed?

Global-mean of grid-point correlation² with opposite 20-member half ensemble (pattern filtered)

• LFCA of a single ensemble member identifies forced response better than 20-member ensemble mean!

Comparison between pattern filtering and simple ensemble mean for large-scale averages

LFCA of HadCRUT4 Observations

Choosing which patterns are forced becomes much more problematic in observations

Wills et al., in prep. - Analysis of HadCRUT4

LFCA of HadCRUT4 Observations

Standard Deviations

Choosing which patterns are forced becomes much more problematic in observations Forced

60°N 60°N 0.4 30°N 30°N 30 0.2 EQ EQ EQ -0.2 30°S 30°S 30°S -0.4 60°S 60°S 60% -0.6 -0.8 90°E 180° 90°W 90°E 90°W 90°E 90°W 180 180 LFC 3 LFC 2 2 LFC 1 1900 2000 1850 1950 2000 1900 1950 1850 1900 1850 Year Year Year 60°N 0.4 30°N 30 0.2 EQ EQ EQ -0.2 30°S 30°S 30°S -0.4 60°S 60°S 60°S -0.6 90°E 90°E 180° 90°E 180 90°W 180 90°W 90°W I FC 6 o 1850 1900 1950 2000 1900 1950 2000 0 1850 1900 1950 2000 Year Year Year Unforced

Wills et al., in prep. - Analysis of HadCRUT4

HadCRUT4 (Cowtan & Way) Temperature Change (2009-2018) - (1979-1988)

HadCRUT4 (Cowtan & Way) Temperature Change (2009-2018) - (1979-1988)

2°C

1.5

1

0.5

0

Conclusions:

- 1. Internal variability (especially ENSO) is aliased into ensemblebased estimates of the forced climate response
- 2. By identifying patterns that are robust across the ensemble (and those that aren't), we can identify the forced response with 5-10x fewer ensemble members (especially for local temperature)
- **3.** Low-frequency component analysis provides a promising tool for identifying the forced response in a single realization, but requires subjective decision on the number of patterns to include

Potential applications:

- 1. Identifying and studying climate signals with a small signal-tonoise ratio (e.g., tropical Pacific SST gradient changes)
- 2. Identifying forced temperature changes within a model ensemble to subtract from other ensembles in the same model (e.g., single-forcing, decadal prediction)
- 3. Removing the forced response from modes of internal variability in observations