

Impact of Balanced and Unbalanced motions on the Seasonality of Energy Cascade in the North Atlantic.

Adekunle Ajayi, Julien Le Sommer, Jean-Marc Molines, Guillaume Serazin, Brian Arbic and Patrice Klein.

Date : 14 - 03 - 2019

CNRS/IGE / Université Grenoble Alpes

Flow of energy

CNRS/IGE / Université Grenoble Alpes

nergy c Energy in the North Atlantic

Model : NEMO based NATL60

Surface Speed : 2013-03-01

Model: NEMO based NATL60

	Sur	TACE Sheed '	2013-03-01				
							NATL60
60			e se			Domain	26.5N - 65N
egree						Numerical Code	Nemo v.3.6
e in d		Reserve			Horizontal grid	$1/60^{\circ}: 0.9 { m km}$ - $1.6 { m km}$	
atitude					Vertical coordinate	Z partial cells	
			mostre	Barte		Vertical grid	300 Levels : 1 m - 50 m
30						Boundary conditions	GLORYS2v3
L	-80 -60	-40	-20	Ó		Atmospheric forcing	DFS5.2
		Longitude (in	degree)			Horizontal Viscosity	3rd order Upstream-Biased
0.0	0.2	0.4	0.6	0.8	1.0		

Model : NEMO based NATL60

Surface Speed : 2013-03-01

	NATL60
Domain	26.5N - 65N
Numerical Code	Nemo v.3.6
Horizontal grid	$1/60^{\circ}: 0.9 { m km}$ - $1.6 { m km}$
Vertical coordinate	Z partial cells
Vertical grid	300 Levels : 1 m - 50 m
Boundary conditions	GLORYS2v3
Atmospheric forcing	DFS5.2
Horizontal Viscosity	3rd order Upstream-Biased

- NATL60 is a submesoscale permitting ocean model that can serve in capacity as virtual observation dataset for **SWOT**.
- NATL60 Effective resolution ~ 10km

CNRS/IGE / Université Grenoble Alpes

NATL60 vs SARAL

SSH Wavenumber spectra. [Lat : 30 to 50, lon : -50 to -20]

Fair agreement between NATL60 and SARAL at the mesoscale range.

NATL60 vs HYCOM50

Spectra result in a region close to the gulf stream

Spectra slopes agrees with the prediction of Quasi-geostrophic dynamics. (See Julien's talk)

KE spectra flux from advective term

$$\Pi_A(k) = \int_k^{k_s} -\operatorname{Re}\left[\widehat{\mathbf{u}}^* \cdot \left(\widehat{\mathbf{u}} \cdot \nabla_H \mathbf{u}\right)\right](k) \, dk,$$

 Π is integral of the local horizontal advective term from k to the largest wavenumber k_s. k_s is the wavenumber corresponding to the gridsize.

At a given wavenumber k, Π corresponds to the KE that fluxes from smaller wavenumbers to larger wavenumbers. A POSITIVE (negative) value corresponds to a FORWARD (inverse) KE cascade.

KE spectra flux : JAS

- Inverse cascade of energy dominate in summer time.
- Inverse cascade from 100km upward.

KE spectra flux : JFM

- Inverse cascade from 30km upward (submesoscale feeding large scale flows).
- Direct cascade at high wavenumber with stronger cascade in hourly outputs. Why?
- A factor of 4 difference between Hourly / Daily forward cascade.
- This difference in hourly/daily KE spectra flux is observed only in winter time.

CNRS/IGE / Université Grenoble Alpes

Frequency-Wavenumber Spectra

Journal of Geophysical Research: Oceans

RESEARCH ARTICLE

10.1029/2018JC014438

Key Points:

 The respective signature of balanced motions and internal gravity waves on different surface oceanic fields has been revealed

Partitioning Ocean Motions Into Balanced Motions and Internal Gravity Waves: A Modeling Study in Anticipation of Future Space Missions

Hector S. Torres¹ (D), Patrice Klein^{1,2} (D), Dimitris Menemenlis¹, Bo Qiu³ (D), Zhan Su¹ (D), Jinbo Wang¹ (D), Shuiming Chen³ (D), and Lee-Lueng Fu¹ (D)

- **RW** : Rossby Waves.
- **MBM** : Mesoscale Balanced Motions.
- **SBM** : Submesoscale Balanced Motions.
- **USM** : Unbalanced Submesoscale Motions.
- IGW : Internal Gravity Waves.

SSH : w-k spectra

• We resolve high frequency motions (IGWs and USM) in winter for hourly output.

KE : w-k spectra

- We resolve high frequency motions (IGWs and USM) in winter for hourly output.
- Stronger signature of high frequency motions in KE spectra compare to SSH spectra.
- Weaker signature of IGW in summer time.
- Balanced and unbalanced motions are more energetic in winter

KE : Helmotz Decomposition

- Rotational flow is more energetic than divergent flow across all scales in both seasons
- Flow dynamics is dominated by balanced motions.

Energy Transfer in the North Atlantic

CNRS/IGE / Université Grenoble Alpes

wavenumber (cpkm)

- SBMs are more energetic in winter compare to summer and they mostly represent a source of energy for large scale flow through inverse cascade.
- High frequency motions have stronger signature in KE spectra than in SSH spectra and are involved both in inverse cascade and a direct cascade of energy towards dissipation.
- In this model simulation (without tides), high frequency motions have almost no impact on energy transfer in summer time.

Future Work :

- Estimate w-k spectra for w'b'
- Reproduce this analysis with eNATL60 (NATL60 + Tides)

Energy Transfer in the North Atlantic

Energy cascade in ocean mesoscale inertial range

Energy cascade in ocean mesoscale inertial range

• Stronger signature of IGW in winter

Energy cascade in ocean mesoscale inertial range