Exploring the dynamical connections between GM and Redi Mixing Coefficients: Diagnosing Transport Tensor in Zonally Inhomogeneous Flows

Dhruv Balwada¹, Shafer Smith¹ & Ryan Abernathey² ¹New York University ²Columbia University

A Simple Recipe for Turbulent Transport

Tracer Equation

$$\partial_t c + \nabla . (\mathbf{v}c) = \nabla . (\kappa_m \nabla c)$$

 Reynold's
 Averaging

Tracer Equation For Mean/Coarse Model Variable

$$\partial_t \overline{C} + \overline{\mathbf{V}} \cdot \nabla \overline{C} = \nabla \cdot (\kappa_m \nabla \overline{C}) - \nabla \cdot \mathbf{F}^{\mathbf{c}}$$

Mixing length + Scale Separation/ Small Amplitude+ Locality

$$\begin{aligned} \mathbf{F}^{\mathbf{c}} &= \overline{\mathbf{v}'c'} = -(\overline{\mathbf{v}'l'})\nabla\overline{C} - (\overline{\mathbf{v}'l'l'})\nabla\nabla\overline{C} + O(l^4) \\ &\approx -(\overline{\mathbf{v}'l'})\nabla\overline{C} & (l = l'/L_C << 1) \\ &= -\left[\frac{\overline{u'l'^x}}{\overline{v'l'^x}} \quad \frac{\overline{u'l'^y}}{\overline{v'l'^y}} \quad \frac{\overline{u'l'^z}}{\overline{v'l'^z}}\right] \begin{bmatrix} \partial_x \overline{C} \\ \partial_y \overline{C} \\ \partial_z \overline{C} \end{bmatrix} \\ &= -\mathbf{K}\nabla\overline{C} \end{aligned}$$

(Taylor 1915 ... Plumb and Mahlmann 1987... Bachmann et al 2015)

Ocean Meso-scale Parameterizations

Eddy Induced Advection	Isopycnal Stirring
$\mathbf{u}^* = -\partial_z(\kappa_{GM}\mathbf{s})$	$\tilde{\mathbf{F}^{\mathbf{c}}}_{Redi} = -\kappa_{Redi} \tilde{\nabla}_{iso} \overline{C}$
$w^* = \nabla_H . (\kappa_{GM} \mathbf{s})$ • Adiabatic isopycnal slumping. • Sink of APE, models the conversion of APE to KE.	 Along isopycnal diffusion of tracers. Sink of variance - models the stirring enhanced variance dissipation in the tracer variance equation.
Gent and McWilliams 1990, Gent et al 1995	Solomon 1971, Redi 1982
$\mathbf{K^{GM}} = \begin{bmatrix} 0 & 0 & -\kappa_{GM} s^x \\ 0 & 0 & -\kappa_{GM} s^y \\ \kappa_{GM} s^x & \kappa_{GM} s^y & 0 \end{bmatrix}$	$\mathbf{K}^{\mathbf{Redi}} = \kappa_{Redi} \begin{bmatrix} 1 & 0 & s^x \\ 0 & 1 & s^y \\ s^x & s^y & \mathbf{s} ^2 \end{bmatrix}$

 $\mathbf{K^{OGCM}} = \begin{bmatrix} \kappa_{Redi} & 0 & (\kappa_{Redi} - \kappa_{GM})s^x \\ 0 & \kappa_{Redi} & (\kappa_{Redi} - \kappa_{GM})s^y \\ (\kappa_{Redi} + \kappa_{GM})s^x & (\kappa_{Redi} + \kappa_{GM})s^y & \kappa_{Redi}|\mathbf{s}|^2 \end{bmatrix}$

Griffies 2004

Linking GM and Redi

For QG PV:
$$\overline{\mathbf{u}q} = \overline{\mathbf{u}\zeta} + \partial_z \left(\frac{f\overline{\mathbf{u}b}}{N^2}\right) + \nabla \times \left(\frac{\overline{b^2}}{2N^2}\hat{z}\right)$$
$$\overline{vq} \approx \partial_z \left(\frac{f\overline{vb}}{N^2}\right)$$

In **Zonally Homogeneous** Simulations:

$$\kappa_q \partial_z \boldsymbol{s} \approx \partial_z \left(\kappa_{\rm gm} \boldsymbol{s} \right)$$

Treguier 1999, … Smith & Marshall 2009, Abernathey et al 2013

Empirically: K_y ~ K_q, K_y != K_{gm}

- Thus, a recipe for setting consistent parameters is available under the conditions of a zonally symmetric channel.

Non-Zonal & Inhomogeneous

Roach, Balwada & Speer 2018

Experimental Setup

Physical Model

- MITgcm
- 2000²km x 3km
- Resolution: 5km x 40 levs
- Center: 50°S
- Channel with:
- (A) No-slip sides
- (B) Sponge at north wall
- SST restored to linear T(y)
- Steady sinusoidal windstress
- No salinity, linear EOS
- Quadratic drag
- LLC4320 subgrid parameterization-Leith dissipation
- 150 year spin-up

Passive Tracers

- 10 tracers, each varying in one direction
- 2 restoring time scales 1& 6 years
- 35 years spin up
- 20 years of post-spinup statistics.

Diagnose Eddy Transport Tensor

How well does K reconstruct buoyancy/temperature flux?

3.5

3.0

2.5

1.5

1.0

0.5

0.0

법 2.0

E(ub)

E(vb)

E(wb)

E(∇. **u**b)

 $E(\frac{d}{dz}\mathbf{u}_H\mathbf{b})$

100

150

¥

Y

200

Diagnosed Tensor

Symmetric Tensor

@Z=1500m

AntiSymmetric Tensor

Does the diagnosed tensor have the expected properties?

Does S dissipate variance? Are eigenvalues of S positive?

Is buoyancy transported along mean isopycnals?

- Does **A** dissipate APE?

Why are mesoscale eddy fluxes seemingly diabatic?

 $\partial_t \overline{b'^2}/2 + \nabla \cdot (\overline{\mathbf{u}}\overline{b'^2}/2 + \overline{\mathbf{u'}b'^2}) = \mathbf{F}^b \cdot \nabla B = -(\mathbf{S}\nabla B) \cdot \nabla B$

For Zonal Steady Flows:

 $(\mathbf{S}\nabla B).\nabla B \approx 0$

However, for Non-Zonal InHomogeneous Flows:

 $(\mathbf{S}\nabla B).\nabla B \neq 0$

Hence,

 $\mathbf{K} \approx \mathbf{K}_{GM} + \mathbf{K}_{Redi} + \mathbf{K}_{Var-Transport} + ??$

Summary

- GM and Redi diffusivity coefficients are not the same, for flows with vertical variations and non-constant interior PV.
- A recipe for setting consistent GM and Redi diffusivity coefficients is available in the literature, based on zonal homogeneous flows.
- We are attempting to extend this idea to non-zonal and inhomogeneous flows, which are more apt for the real ocean.
- A multiple tracer method helps diagnose a diffusivity tensor that can skillfully reconstruct the buoyancy and PV fluxes.
- Is this the tensor we want?
 - Yes, it can correctly capture tracer fluxes.
 - No, because it does not have some of the favorable properties we would like the parameterized tensor to have.
- Main issue variance transport, which is not included in 0-D theories.
- In regions that are ~zonal and ~homogeneous the QG link between symmetric and antisymmetric tensor holds.

Future Work

- Some clever way to remove the contribution of variance transport before diagnosing the tensor might be helpful (numerous papers by Eden and Greatbatch 200X).
- Strategies for including variance transport in OGCM parameterizations.

To be continued ...

Extras

Check whether PV flux mostly due to buoyancy flux...

Check whether predicted dynamical connection holds

AntiSymmetric Tensor

Role of Redi diffusivity in Ocean/Climate Models

- Heat and salt transport (Griffies 2015)
- Oxygen
- Changes in SST and SSS, resulting in coupled responses.