The Role of Western Boundaries in Wind-Driven Energetics

WK Dewar EOAS FSU/LEGI with Q Jamet, B Deremble and N Wienders Sources and Sinks of Ocean Mesoscale Eddy Energy Tallahassee March 12, 2019

Surface Speed (m/s) from 1/12 North Atlantic Model

A recent view of the Ocean Energy Budget

The leading theoretical views of the General Circulation and eddies come from

$$\beta v = f \frac{\partial}{\partial z} w; \ \vec{u} \cdot \nabla f N^2 = 0$$
$$\varepsilon = \frac{U}{fL} <<1, \ L \sim L_{\beta}, \ \frac{\delta h}{H} \sim 1$$

Ventilated Thermocline Theory geostrophic, hydrostatic, steady

$$\frac{d}{dt}q = 0; \ q = \nabla^2 p + \frac{\partial}{\partial z} \frac{f}{N^2} \frac{\partial}{\partial z} p + \beta y$$
$$\varepsilon = \frac{U}{fL} <<1, \ L \sim L_R, \ \frac{\delta h}{H} \sim \varepsilon$$

Fig. 5. Potential vorticity of the $\sigma_{\theta} = 26.05-26.25$ interval (Layer A), Pacific Ocean. Other features as in Fig. 4. Note the high q "tongue" entering the eastern sides of the North and South Pacific.

Homogenization Theory mildly ageostrophic

Many Studies have supported the explanatory value of these theories to the ocean.

Space and time scale separation

$$T_{pg} = \frac{L_{\beta}}{\beta L_{R}^{2}} >> \frac{1}{\varepsilon f}$$
$$L_{\beta} >> L_{R}$$

Pedlosky 1984 The Equations for Geostrophic Motion in the Ocean

$$\frac{\partial}{\partial T} \frac{(z_o)_b}{f} + \frac{1}{f} \overline{J}(M_o, \frac{(z_o)_b}{f}) = 0$$
 The Ventilated Thermocline

$$\frac{\partial}{\partial t}q + \overline{\vec{u}}_o \cdot \nabla q + J(M_1, q) + \frac{(z_o)_b}{f}J(M_1, \frac{f}{(z_o)_b}) = 0$$

Quasigeostrophy

 $q = \nabla^2 M_1 - f \frac{(M_1)_{bb}}{(z_0)_{bb}}$

Looks really good - BUT

Leaves us with an energetics problem Ventilated Thermocline is forced, but not dissipative $\iint \vec{u}(p-bz) \cdot \vec{n} \, dS = \iint \vec{\tau} \cdot \vec{u}_o dA$

It's natural to look to western boundary layers for a solution

Grooms, et al DAO, 2011

After much sweating and grinding of teeth, bl pv equation emerges that connects to the pg interior

Looks really good - BUT

Leaves us with an energetics problem Energy is conservative.

So – What's Next? Continuing around the gyre, we come to the separated jet

Full PE dynamics are required

So, where does this leave us?

How to test in a realistic GCM?

 $\vec{\overline{u}} \cdot \nabla \vec{\overline{u}}_{h} + \vec{f} x \vec{u}_{h} = -\nabla_{h} \vec{p} - \nabla \cdot \vec{F} - \nabla \cdot \vec{u}' \vec{u}_{h}'$ $\nabla \cdot \vec{\overline{u}}K = -\vec{\overline{u}}_{h} \cdot \nabla \overline{p} - \vec{\overline{u}}_{h} \cdot \nabla \cdot \vec{\overline{F}} - \vec{\overline{u}}_{h} \nabla \cdot \vec{\overline{u'}u'_{h}}$ VIS PW MEC MKEF WW+KEDISS

$$\mathsf{PW} = 3.5 \, \mathsf{GW}$$

WW = 4.9 GW

KEDISS = .01 GW

MEC = -1.3 GW

Something of a surprise

DKEF = 21 GWPW = -39 GW $WW = -0.7 \, GW$ KEDISS = -7 GWMEC = -11 GW

Leading order balance -Potential energy to kinetic Energy conversion

Dissipation and eddies are not negligible, the latter due to Charleston Bump

DKEF = -28 GW PW = 17 GW WW = 3.6 GW KEDISS = -0.7 GW MEC = -14 GW

Summary:

A straightforward dynamical division of subtropical gyres suggested by theory seems consistent with a realistic 1/12 model

Mesoscale is powered up primarily in the separated jet extension (not obviously qg)

Is the ventilated thermocline inertial?