

"Sources and Sinks of Ocean Mesoscale Eddy Energy" workshop

Regimes of inverse energy cascade in the ocean mesoscale inertial range.

with Adekunle Ajayi, Jean Marc Molines, Aurélie Albert, Eric Chassignet, Xiabao Xu

Tallahasse, March, 12-14 2019

Julien Le Sommer (IGE/CNRS),

"Sources and Sinks of Ocean Mesoscale Eddy Energy" workshop

Regimes of inverse energy cascade in the ocean mesoscale inertial range.

with Adekunle Ajayi, Jean Marc Molines, Aurélie Albert, Eric Chassignet, Xiabao Xu

Tallahasse, March, 12-14 2019

Julien Le Sommer (IGE/CNRS),

Geostrophic kinetic energy

Ferrari & Wunsch (2009), adapted from Wunsch & Stammer (1998)

Background and motivation

-Large reservoir of mesoscale kinetic energy

-Understanding how this energy is fluxed across scales is important (!)

120°E

Cascades in 2D / QG turbulence

- -Large reservoir of mesoscale kinetic energy
- -Understanding how this energy is fluxed across scales is important (!)
- -Geostrophic turbulence predicts both inverse KE and forward enstrophy cascades (Vallis 2005)

Cascades in 2D / QG turbulence

- -Large reservoir of mesoscale kinetic energy
- -Understanding how this energy is fluxed across scales is important (!)
- -Geostrophic turbulence predicts both inverse KE and forward enstrophy cascades (Vallis 2005)

Cascades in 2D / QG turbulence

- -Large reservoir of mesoscale kinetic energy
- -Understanding how this energy is fluxed across scales is important (!)
- -Geostrophic turbulence predicts both inverse KE and forward enstrophy cascades (Vallis 2005)

Actual kinetic energy spectra at mesoscales

- -Large reservoir of mesoscale kinetic energy
- -Understanding how this energy is fluxed across scales is important (!)
- -Geostrophic turbulence predicts both inverse KE and forward enstrophy cascades (Vallis 2005)
- -Actual KE distribution from models and altimetry exhibit an inertial regime

Actual kinetic energy spectra at mesoscales

- -Large reservoir of mesoscale kinetic energy
- -Understanding how this energy is fluxed across scales is important (!)
- -Geostrophic turbulence predicts both inverse KE and forward enstrophy cascades (Vallis 2005)
- -Actual KE distribution from models and altimetry exhibit an inertial regime

- -Large reservoir of mesoscale kinetic energy
- -Understanding how this energy is fluxed across scales is important (!)
- -Geostrophic turbulence predicts both inverse KE and forward enstrophy cascades (Vallis 2005)
- -Actual KE distribution from models and altimetry exhibit an inertial regime
- -Indications of both forward and inverse kinetic energy cascades (Scott and Wang 2005, Sasaki 2017, Aluie et al 2018, Kjellson and Zanna 2017, ...)

Slopes of KE spectra in mesoscale inertial range

- -Large reservoir of mesoscale kinetic energy
- -Understanding how this energy is fluxed across scales is important (!)
- -Geostrophic turbulence predicts both inverse KE and forward enstrophy cascades (Vallis 2005)
- -Actual KE distribution from models and altimetry exhibit an inertial regime
- -Indications of both forward and inverse kinetic energy cascades (Scott and Wang 2005, Sasaki 2017, Aluie et al 2018, Kjellson and Zanna 2017, ...)
- -Contrasted slopes of KE spectra from altimetry (Xu and Fu 2012, Dufaut 2016)

Slopes of KE spectra in mesoscale inertial range

Background and motivation

- -Large reservoir of mesoscale kinetic energy
- -Understanding how this energy is fluxed across scales is important (!)
- -Geostrophic turbulence predicts both inverse KE and forward enstrophy cascades (Vallis 2005)
- -Actual KE distribution from models and altimetry exhibit an inertial regime
- -Indications of both forward and inverse kinetic energy cascades (Scott and Wang 2005, Sasaki 2017, Aluie et al 2018, Kjellson and Zanna 2017, ...)
- -Contrasted slopes of KE spectra from altimetry (Xu and Fu 2012, Dufaut 2016)

 $PSD_{||u||} \propto k^{-3}$ Philips-like regimes (QG)

Charney-like regimes (SQG) $PSD_{||u||} \propto k^{-2}$

Slopes of SSH spectra from current altimeters (70-250 km)

Background and motivation

SSH -Large reservoir of mesoscale kinetic energy 4.2 -Understanding how this energy is fluxed across scales is important (!) 3.7 -Geostrophic turbulence predicts both inverse KE and forward enstrophy 3.2 cascades (Vallis 2005) -Actual KE distribution from models and 2.7 altimetry exhibit an inertial regime -Indications of both forward and inverse 2.2 kinetic energy cascades (Scott and Wang 2005, Sasaki 2017, Aluie et al 2018, Kjellson and Zanna 1.7 2017, ...) -Contrasted slopes of KE spectra from 1.2 altimetry (Xu and Fu 2012, Dufaut 2016) -Differences between low / high KE regions 0.7 (SQG versus QG) 0.2

Slopes of SSH spectra from current altimeters (70-250 km)

Background and motivation

-Large reservoir of mesoscale kinetic energy

- 4.2 2.2 -Understanding how this energy is fluxed across scales is important (!)
- 3.7 1.7 -Geostrophic turbulence predicts both inverse KE and forward enstrophy 3.2 1.2 cascades (Vallis 2005)
- -Actual KE distribution from models and 2.7 0.7 altimetry exhibit an inertial regime
- -Indications of both forward and inverse 2.2 0.2 kinetic energy cascades (Scott and Wang 2005, Sasaki 2017, Aluie et al 2018, Kjellson and Zanna 1.7 -0.7 2017, ...)
- -Contrasted slopes of KE spectra from 1.2 -1.2 altimetry (Xu and Fu 2012, Dufaut 2016)
- 0.7 -1.7 Differences between low / high KE regions (SQG versus QG)

0.2 -2.2

SSH KE

Slopes of SSH spectra from current altimeters (70-250 km)

Background and motivation

-Large reservoir of mesoscale kinetic energy

4.2 2.2 -Understanding how this energy is fluxed across scales is important (!)

SSH KE

- 3.7 1.7 -Geostrophic turbulence predicts both inverse KE and forward enstrophy 3.2 1.2 cascades (Vallis 2005)
- -Actual KE distribution from models and 2.7 0.7 altimetry exhibit an inertial regime
- -Indications of both forward and inverse 2.2 0.2 kinetic energy cascades (Scott and Wang 2005, Sasaki 2017, Aluie et al 2018, Kjellson and Zanna 1.7 -0.7 2017, ...)
- -Contrasted slopes of KE spectra from 1.2 -1.2 altimetry (Xu and Fu 2012, Dufaut 2016)
- 0.7 -1.7 Differences between low / high KE regions (SQG versus QG)
- 0.2 -2.2 Still unclear how energy is being fluxed across mesoscales

1. Background and motivation

2. Model datasets : NATL60 and HYCOM50

- 3. Slope of kinetic energy wavenumber spectra
- 4. Kinetic energy spectral flux though nonlinear advection
- 5. Wrap-up and conclusions

NEMO NATL60 experiment

domain Horizontal resolution Vertical grid Vertical coordinate **Time-step** Integration period Atmos forcing Boundary conditions Sea ice SSS restoring Equation of state

25°N-66°N 1/60° (0.9km-1.6km) 300 levels(z)z-star 30s Jan 2012-Oct.2013 DFS5.2 (ERA-i) GLORYS 2v3 LIM2 300 days / 50m EOS-80

Momentum advection Tracer advection Vertical physics Lateral BC Lateral closures

UBS (3rd order upwind) UBS (3rd order upwind) TKE free-slip isoneutral diff. + Fox-Kemper

Effective resolution : ~10km

Model datasets : NATL60 and HYCOM50 (1/6)

https://doi.org/10.5281/zenodo.1210116 **Code + namelists :**

HYCOM50 experiment

domain
Horizontal resolution
Vertical grid
Vertical coordinate
Integration period
Atmos forcing
SSS restoring
Boundary conditions

28°S-80°N 1/50°(1.1km-2.2km) 32 levels (iso) hybrid/iso 20 years ERA-40 15m / 30 days GDEM

Vertical physics Lateral BC Lateral closures

KPP no-slip Biharmonic + Laplacian

Effective resolution : ~10-15km

Described and assessed in detail in Chassignet and Xu 2017

Model datasets : NATL60 and HYCOM50 (2/6)

Comparison of surface eddy kinetic energy

Model datasets : NATL60 and HYCOM50 (3/6)

Comparison of surface eddy kinetic energy

Model datasets : NATL60 and HYCOM50 (3/6)

Comparison of surface eddy kinetic energy

Model datasets : NATL60 and HYCOM50 (3/6)

Eddy kinetic energy cross section at 55°W

Model datasets : NATL60 and HYCOM50 (4/6)

Eddy kinetic energy cross section at 55°W

The two models show deep penetration of eddy kinetic energy (with differences)

Model datasets : NATL60 and HYCOM50 (4/6)

Comparaison of surface wavenumber spectra

Model datasets : NATL60 and HYCOM50 (5/6)

Comparaison of surface wavenumber spectra

Model datasets : NATL60 and HYCOM50 (5/6)

Comparaison of surface wavenumber spectra

Model datasets : NATL60 and HYCOM50 (5/6)

Good agreement of the two models in terms of surface wavenumber spectra

Assessment of surface wavenumber spectra

Model datasets : NATL60 and HYCOM50 (6/6)

Assessment of surface wavenumber spectra

Model datasets : NATL60 and HYCOM50 (6/6)

Assessment of surface wavenumber spectra

Model datasets : NATL60 and HYCOM50 (6/6)

Good agreement of NATL60 with current altimeters in both winter and summer

- 1. Background and motivation
- 2. Model datasets : NATL60 and HYCOM50

3. Slopes of kinetic energy wavenumber spectra

- 4. Kinetic energy spectral flux though nonlinear advection
- 5. Wrap-up and conclusions

Slopes of kinetic energy wavenumber spectra (1/4)

~

Large sensitivity of diagnosed slopes to the range of scales considered

Slopes of kinetic energy wavenumber spectra (1/4)

~

Slopes of kinetic energy wavenumber spectra (2/4)

Kinetic energy integral scale

$$\lambda_e = \frac{\int \int E(k,l) dk dl}{\int \int \sqrt{k^2 + l^2} E(k,l) dk dl}$$

Model effective resolution

based on Soufflet et al. 2016, 5-10 times dx

Kinetic energy integral scale

$$\lambda_e = \frac{\int \int E(k,l) dk dl}{\int \int \sqrt{k^2 + l^2} E(k,l) dk dl}$$

Model effective resolution

based on Soufflet et al. 2016, 5-10 times dx

Dynamically based definition of the mesoscale inertial range

(see also Vergara et al. 2019)

Slopes of kinetic energy wavenumber spectra (4/4)

Slope of kinetic energy spectra in the mesoscale inertial range

Slopes of kinetic energy wavenumber spectra (4/4)

Slope of kinetic energy spectra in the mesoscale inertial range

As expected the integral scale varies with latitude (following the Rossby radius) More surprisingly, KE spectral <u>slopes follow QG predictions</u> in both models This is true in both high and low EKE regions

- 1. Background and motivation
- 2. Model datasets : NATL60 and HYCOM50
- 3. Slopes of kinetic energy wavenumber spectra
- 4. Kinetic energy spectral flux though nonlinear advection
- 5. Wrap-up and conclusions

Diagnosing kinetic energy exchanges

Kinetic energy spectral flux though nonlinear advection (1/4)

$$\Pi_A(k) = \int_k^{k_s} -\operatorname{Re}\left[\widehat{\mathbf{u}}^* \cdot \left(\widehat{\mathbf{u} \cdot \nabla_H \mathbf{u}}\right)\right](k) dk$$

following Capet et al. 2008, and many others

Caveats of this approach : see Aluie et al. 2018

Kinetic energy spectral flux though nonlinear advection (2/4)

Kinetic energy spectral flux though nonlinear advection (2/4)

- Energy is injected at scales close to the Rossby radius (Rd)

- Evidence of both inverse (at large scale) and direct energy cascade (at high wavenumber) - Inverse energy cascade is arrested ~Rhine scales (Rh) except in the subpolar region.

Kinetic energy spectral flux though nonlinear advection (3/4)

Kinetic energy spectral flux though nonlinear advection (3/4)

Winter dynamics favours :

- stronger forward cascade at high wavenumber. - Inverse energy cascade from 25km upward.

Kinetic energy spectral flux though nonlinear advection (4/4)

Kinetic energy spectral flux though nonlinear advection (4/4)

- Forward cascade at high wavenumber is strongly influenced by ageostrophic flow. - KE spectral flux from geostrophic velocity differ from the flux from total velocity

- 1. Background and motivation
- 2. Model datasets : NATL60 and HYCOM50
- 3. Slopes of kinetic energy wavenumber spectra
- 4. Kinetic energy spectral flux though nonlinear advection
- 5. Wrap-up and conclusions

- Importance of better understanding how energy is fluxed across mesoscales
- Current observations do not allow yet to directly answer this question (until SWOT flies)
- although SSH spectral slopes from altimeters provide important information
- Current generation high res ocean models (developed for preparing SWOT mission) can help

- Importance of better understanding how energy is fluxed across mesoscales
- Current observations do not allow yet to directly answer this question (until SWOT flies)
- Ithough SSH spectral slopes from altimeters provide important information
- Current generation high res ocean models (developed for preparing SWOT mission) can help

Here, results based on two high resolution ocean models (dx ~1km) show that :

- Midlatitude dynamics follows QG predictions almost everywhere north of 30°N.
- An **inverse cascade of energy** is indeed occurring at scale > 25km.
- KE flux based on geostrophic currents differ from the flux computed from total velocity.
- This questions our ability to infer energy cascade from the upcoming SWOT mission alone
- How much are **ageostrophic flows** (IGW) contributing to energy exchanges across scales ?

NATL60

eNATL60:

- extended domain : 6°N + enclosed seas
- tidal signals : K1, O1, S2, M2, N2
- improved numerics

Transitioning from NATL60 to eNATL60

eNATL60

NATL60

eNATL60:

- extended domain : 6°N + enclosed seas
- tidal signals : K1, O1, S2, M2, N2
- improved numerics

Transitioning from NATL60 to eNATL60

eNATL60

Transitioning from NATL60 to eNATL60

eNATL60

by IGE/Ocean Next dx ~1km, 300 levels + tides

Transitioning from NATL60 to eNATL60

by IGE/Ocean Next dx ~1km, 300 levels + tides

Transitioning from NATL60 to eNATL60

Additional material

Scale of eddy variability in HYCOM50 and NATL60

Nonlinearity parameter :	Eddy velocity Rossby wave speed	$= \frac{U_{eddy}}{\beta R_d^2}$
Normalised eddy scale :	$\frac{\text{Eddy scale}}{\text{Rossby Radius}} =$	$\frac{L}{R_d}$

- Most of the eddy scales lie between the Rossby radius of deformation and the Rhine scale.
- Most of the eddies in the North Atlantic are nonlinear and the nonlinearity increases with latitude.
- Eddies in the 55 lat band are more linear in NATL60 compare to HYCOM50.
- Eddies in HYCOM50 tend to follow more closely the Rhine scale (stronger inverse cascade ?).

