# Evidence of Jet-Scale Overturning Ocean Circulations in Argo Float Trajectories

in collaboration with:



- Qian Li
- University of New South Wales, Sydney, Australia

- Sukyoung Lee (Penn State University)
- Matthew Mazloff (Scripps Institution of Oceanography)

Sources and Sinks Ocean Mesoscale Eddy Energy Workshop, Tallahassee March 12, 2019



## Filamented Southern Ocean MLD (color) at the early stage of austral winter (July)



<u>The deepest MLDs are located just on the equatorward flank of the ACC jets.</u>

## The JSOC is responsible for the formation of the deep mixed layers.

### **Mechanisms for the winter mixed** layer formation in the SO:

•Air-sea buoyancy loss (Sallée et al. 2006; Dong et al. 2008; Hogg 2010) •Ekman advection of buoyancy (Rintoul and England 2002) •Mesoscale eddy buoyancy transport (Sallée et al. 2010) •Langmuir turbulence associated with the Stokes drift (Belcher et al. 2012)



[Li & Lee 2017, JPO]





## The JSOC is responsible for the formation of the deep mixed layers.

### **Mechanisms for the winter mixed** layer formation in the SO:

•Air-sea buoyancy loss (Sallée et al. 2006; Dong et al. 2008; Hogg 2010) •Ekman advection of buoyancy (Rintoul and England 2002) •Mesoscale eddy buoyancy transport (Sallée et al. 2010) •Langmuir turbulence associated with the Stokes drift (Belcher et al. 2012)



[Li & Lee 2017, JPO]

SAF **JSOC** ♥ 0 0 Eddy momentum flux Equatorward North



## Eddy momentum flux can drive multiple jets and JSOCs

## JSOC is strong enough to show in the transformed Eulerian mean (TEM) circulation



$$v] - \frac{\partial}{\partial z} \left[ \frac{1}{N^2} v^* b^* \right]$$
$$w] + \frac{\partial}{\partial y} \left[ \frac{1}{N^2} v^* b^* \right]$$

**QG zonal momentum and buoyancy equations:** 

$$[*v^*] + \frac{\partial}{\partial z} \left[ \frac{f_0}{N^2} v^* b^* \right] + [F]$$
  
 $-N^2 [w^\dagger] + [Q]$ 

### Thermal wind balance

$$\underbrace{-f_0 \frac{\partial}{\partial z} \frac{\partial}{\partial y} [u^* v^*]}_{A} \underbrace{+ f_0 \frac{\partial^2}{\partial z^2} \left[ \frac{f_0}{N^2} v^* b^* \right]}_{B}$$

## Eddy momentum flux can drive multiple jets and JSOCs

## JSOC is strong enough to show in the transformed Eulerian mean (TEM) circulation



$$v] - \frac{\partial}{\partial z} \left[ \frac{1}{N^2} v^* b^* \right]$$
$$w] + \frac{\partial}{\partial y} \left[ \frac{1}{N^2} v^* b^* \right]$$

### **QG zonal momentum and buoyancy equations:**

$$[*v^*] + \frac{\partial}{\partial z} \left[ \frac{f_0}{N^2} v^* b^* \right] + [F]$$
  
 $-N^2[w^\dagger] + [Q]$ 

Thermal wind balance

$$\underbrace{-f_0 \frac{\partial}{\partial z} \frac{\partial}{\partial y} [u^* v^*]}_{A} + \underbrace{f_0 \frac{\partial^2}{\partial z^2} \left[ \frac{f_0}{N^2} v^* b^* \right]}_{B}$$

## Eddy momentum flux can drive multiple jets and JSOCs

## JSOC is strong enough to show in the transformed Eulerian mean (TEM) circulation



$$\begin{bmatrix} v \end{bmatrix} - \frac{\partial}{\partial z} \left[ \frac{1}{N^2} v^* b^* \right]$$
$$w \end{bmatrix} + \frac{\partial}{\partial y} \left[ \frac{1}{N^2} v^* b^* \right]$$

**QG zonal momentum and buoyancy equations:** 

$$[*v^*] + \frac{\partial}{\partial z} \left[ \frac{f_0}{N^2} v^* b^* \right] + [F]$$
  
 $-N^2 [w^{\dagger}] + [Q]$ 

### **Thermal wind balance**

$$-f_0 \frac{\partial}{\partial z} \frac{\partial}{\partial y} [u^* v^*] + f_0 \frac{\partial^2}{\partial z^2} \left[ \frac{f_0}{N^2} v^* b^* \right]$$

## Eddy momentum flux can drive multiple jets and JSOCs

### JSOC is strong enough to show in the transformed Eulerian mean (TEM) circulation



$$v] - \frac{\partial}{\partial z} \left[ \frac{1}{N^2} v^* b^* \right]$$
$$w] + \frac{\partial}{\partial y} \left[ \frac{1}{N^2} v^* b^* \right]$$

**QG zonal momentum and buoyancy equations:** 

$$[*v^*] + \frac{\partial}{\partial z} \left[ \frac{f_0}{N^2} v^* b^* \right] + [F]$$
  
 $-N^2 [w^\dagger] + [Q]$ 

**Thermal wind balance** 

$$\underbrace{-f_0 \frac{\partial}{\partial z} \frac{\partial}{\partial y} [u^* v^*]}_{A} + \underbrace{f_0 \frac{\partial^2}{\partial z^2} \left[ \frac{f_0}{N^2} v^* b^* \right]}_{B}$$

• Example from the ocean:



## Eddy momentum flux can drive multiple jets and JSOCs

### JSOC is strong enough to show in the transformed Eulerian mean (TEM) circulation



$$v] - \frac{\partial}{\partial z} \left[ \frac{1}{N^2} v^* b^* \right]$$
$$w] + \frac{\partial}{\partial y} \left[ \frac{1}{N^2} v^* b^* \right]$$

**QG zonal momentum and buoyancy equations:** 

$$[*v^*] + \frac{\partial}{\partial z} \left[ \frac{f_0}{N^2} v^* b^* \right] + [F]$$
  
 $-N^2 [w^{\dagger}] + [Q]$ 

Thermal wind balance

$$\underbrace{-f_0 \frac{\partial}{\partial z} \frac{\partial}{\partial y} [u^* v^*]}_{A} + \underbrace{f_0 \frac{\partial^2}{\partial z^2} \left[ \frac{f_0}{N^2} v^* b^* \right]}_{B}$$

• Example from the ocean:



## Eddy momentum flux can drive multiple jets and JSOCs

### JSOC is strong enough to show in the transformed Eulerian mean (TEM) circulation



$$\begin{bmatrix} v \end{bmatrix} - \frac{\partial}{\partial z} \left[ \frac{1}{N^2} v^* b^* \right]$$
$$w \end{bmatrix} + \frac{\partial}{\partial y} \left[ \frac{1}{N^2} v^* b^* \right]$$

**QG zonal momentum and buoyancy equations:** 

$$[v^*] + \frac{\partial}{\partial z} \left[ \frac{f_0}{N^2} v^* b^* \right] + [F]$$

$$-N^2[w^{\dagger}] + [Q]$$

### **Thermal wind balance**

$$-f_0 \frac{\partial}{\partial z} \frac{\partial}{\partial y} [u^* v^*] + f_0 \frac{\partial^2}{\partial z^2} \left[ \frac{f_0}{N^2} v^* b^* \right]$$

### • Example from the ocean:



## Jet scale

[Li, Lee, Griesel 2016, JPO]



## **JSOCs are found in the 0.1°-resolution ocean model**



- The POP model forced by CORE-IAF
- Horizontal resolution: ~1/10°
- Vertical resolution: 42 levels  $\bullet$
- Period: 1994-2007 (14 years)
- Acknowledgements: Matt Maltrud, Elena Yulaeva, Julie McClean

**<u>120E-144E:</u>** Zonal velocity (color) Meridional and vertical velocities (vectors)



11

## **JSOCs are found in the 0.1°-resolution ocean model**



- The POP model forced by CORE-IAF
- Horizontal resolution: ~1/10°
- Vertical resolution: 42 levels lacksquare
- Period: 1994-2007 (14 years)
- Acknowledgements: Matt Maltrud, Elena Yulaeva, Julie McClean



12

## **JSOCs are found in the 0.1°-resolution ocean model**



- The POP model forced by CORE-IAF
- Horizontal resolution: ~1/10°
- Vertical resolution: 42 levels
- Period: 1994-2007 (14 years)
- Acknowledgements: Matt Maltrud, Elena Yulaeva, Julie McClean

13

## Argo: Observing the Ocean in Real Time



http://www.argo.ucsd.edu/

## The **Observed** Ocean Current Velocities

## An Argo Float Mission



[Schmid et al. 2007]

**Ascending:** Xasc, Yasc, tasc



## The **Observed** Ocean Current Velocities

## An Argo Float Mission



[Schmid et al. 2007]

**Ascending:** Xasc, Yasc, tasc





- <u>Vectors/color</u>: Argo-float-trajectories-based *subsurface (at ~1 km) velocity/magnitude*

## The **Observed** Ocean Current Velocities

## Structure of the Theoretical JSOC

## Schematic diagram of the SAF ( $\rightarrow$ ) and JSOC ( $\rightarrow$ )





## ACC Jets are tilted



## **Streamwise Coordinate**

Streamwise velocity  $\begin{cases} u_s \\ v_s \end{cases}$ 

 $\begin{cases} u_s = u_p \cos \alpha - v_p \sin \alpha \\ v_s = u_p \sin \alpha + v_p \cos \alpha \end{cases}$ 

 <u>Dots</u>: Daily positions of the speed maxima in the AVISO SSH-based surface geostrophic current speed.

## **Detecting Horizontal Motion by Argo Float Trajectories**

### Indo-western Pacific Southern Ocean



[Li, Lee, Mazloff 2018, GRL]

## Negative <u>cross-stream</u> motion across the jets

**Lines:** Streamwise velocity  $(u_s)$ **Bars:** Cross-stream velocity  $(v_s)$ 

## **Detecting Horizontal Motion by Argo Float Trajectories**

### Eastern Pacific Southern Ocean



[Li, Lee, Mazloff 2018, GRL]

### Negative <u>cross-stream</u> motion across the jets

Lines: Streamwise velocity (us) Bars: Cross-stream velocity (vs)

- circulations (JSOCs).
- Analogous to the Ferrel Cell, the JSOCs are <u>thermally indirect</u> with sinking/rising motions on the equatorward/poleward flank of the jets.
- It suggests that the JSOCs indeed exist in nature.
- narrow and deep mixed layer wedge that forms north of the SAF.



# Conclusions

• In the Indo-western Pacific SO, where the jets are relatively well-defined, the analysis shows that <u>eddy momentum fluxes</u> drive the ACC jets and jet-scale overturning

• The <u>negative cross-stream motion</u> is revealed across the jets by Argo float trajectories.

The eddy-driven JSOC associated with the SAF plays an important role in *initiating the* 







### **Reference:**

- *Research Letters*, 45, 11,866–11,874.
- an eddy-driven jet-scale overturning circulation, Journal of Physical Oceanography, 47, 2755–2772.
- Ocean, Journal of Physical Oceanography, 46, 2943-2959.

• Li, Q., S. Lee, and M. R. Mazloff, 2018: Evidence of jet-scale overturning ocean circulations in Argo float trajectories, Geophysical

• Li, Q., and S. Lee, 2017: <u>A mechanism of mixed-layer formation in the Indo-western Pacific Southern Ocean: preconditioning by</u> • Li, Q., S. Lee, and A. Griesel, 2016: Eddy fluxes and jet-scale overturning Circulations in the Indo-Western Pacific Southern

